TGF-β Signaling from Receptors to Smads

Akiko Hata1 and Ye-Guang Chen2

1Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
2The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
Correspondence: akiko.hata@ucsf.edu; ygchen@tsinghua.edu.cn

Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.

The transforming growth factor β (TGF-β) family of secreted growth and differentiation factors comprises more than 30 structurally related proteins. These ligands signal through cell-surface receptors, which are dual-specificity kinases, and intracellular Smad signal transducer proteins. On activation of the receptors, Smad proteins are phosphorylated by type I receptor kinase at the two carboxy-terminal serine residues and translocate into the nucleus to regulate gene expression (Fig. 1). In addition to Smad-dependent signaling, TGF-β receptors also activate several signaling pathways that are collectively called Smad-independent signaling or non-Smad signaling (Fig. 1) (Moustakas and Heldin 2009; Massagué 2012). Both Smad-dependent and Smad-independent signaling pathways are finely tuned to generate cell-type-specific or context-dependent signals through cross talk with other signaling pathways (Fig. 1). This review focuses on the Smad signaling pathway, its modes of regulation, and the Smad-mediated control of gene expression.

BASIC COMPONENTS OF THE TGF-β/SMAD SIGNALING PATHWAY

All TGF-βs and TGF-β-related family of secreted factors bind and activate heteromeric cell-surface complexes of receptors that are classified...
as type I and type II based on their sequence similarities. Both types of receptor contain a cytoplasmic kinase domain that has both serine/threonine kinase activity and tyrosine kinase activity and are, hence, classified as dual-specificity kinases (Fig. 1) (ten Dijke and Heldin 2006). Below we summarize the various steps of receptors activation and the different regulatory factors that are critical modifiers of the signal received by the cytoplasmic transducers, the Smad proteins.

Upon binding to the dimeric ligands, two type I and two type II receptors assemble into heteromeric complexes that allow the type II receptors, which are constitutively active kinases, to phosphorylate the juxtamembrane regions of the cytoplasmic domains of the type I receptors, activating the type I receptor kinases (Moustakas and Heldin 2009; Massague 2012; Xu et al. 2012; Weiss and Attisano 2013). Subsequently, the type I receptor kinases phosphorylate two serine (Ser) residues in the Ser–X–Ser sequence (known as “SSXS motif”) at the carboxy-terminal end of the receptor-regulated Smads (R-Smads). This event activates the R-Smads and enables the formation of heteromeric complexes between two R-Smads and one common-Smad (co-Smad), Smad4, and their
translocation to the nucleus. Seven type I and five type II receptors exist in humans; based on the R-Smads that they phosphorylate, type I receptors can be further divided into two subgroups, those that activate Smad2 and Smad3 in response to TGF-β-like proteins, and those that activate Smad1, Smad5, and Smad8 in response to bone morphogenetic proteins (BMPs). Their specificities are determined by the L45 loop of the type I receptors and the L3 loop of Smads (Feng and Derynck 1997; Chen et al. 1998; Lo et al. 1998). In addition, the inhibitory Smads (I-Smads), Smad6 and Smad7, antagonize the signaling mediated by R-Smads and co-Smad. TGF-βs, in particular TGF-β1 and TGF-β3, appear to bind with the high affinity type II receptor, which then recruits the lower affinity type I receptor, whereas BMPs bind both type I and type II receptor with equal affinity and greater flexibility (Groppe et al. 2008; Huang et al. 2011).

The duration and intensity of the signals transmitted to the Smad proteins depend on the abundance and availability of ligands and their inhibitors, such as extracellular ligand-trapping proteins (e.g., noggin and Gremlin1, which trap BMP ligands) or antagonistic ligands (e.g., Lefty, which inhibits nodal binding to receptors) (Moustakas and Heldin 2009; Massagué 2012; Weiss and Attisano 2013). They also depend on the level of expression and cell-surface localization of type I and type II receptors, and on the posttranslational modifications of the receptors that modulate their kinase activities and substrate recognition.

RECEPTORS: ACTIVATION AND REGULATION OF THEIR ACTIVITIES

Receptor complex formation is essential for TGF-β signaling initiation. Upon ligand binding, TGF-β receptors form a hetero-oligomer, most likely containing two type I and two type II receptor molecules (Wrana et al. 1992, 1994; Yamashita et al. 1994; Massagué 1998; Massagué and Chen 2000; Feng and Derynck 2005). Biochemical and immunofluorescence copatching studies revealed that both type I (TβRI) and type II (TβRII) TGF-β receptors form ligand-independent homomeric complexes, and the binding of TGF-β to preformed homomeric TβRII leads to the formation of a heterotetrameric TβRI–TβRII complex (Chen and Derynck 1994; Henis et al. 1994; Gilboa et al. 1998). However, single-molecule imaging studies showed that, when receptors were expressed at amounts close to the endogenous levels, most TβRI and TβRII molecules are monomers, and TGF-β treatment causes dimerization of TβRII and then recruitment of TβRI, forming a heterotetrameric TβRI–TβRII complex (Zhang et al. 2009, 2010). As these studies are mainly based on ectopic expression systems due to lack of good antibodies for endogenous receptors, these discrepancies could be a result of the different expression levels of the receptors. It will be important to investigate this issue with other approaches, such as clustered regularly interspaced short palindromic repeat (CRISPR)-mediated knockin of tags to follow endogenous proteins. Although the formation of a multimeric complex between TβRI and TβRII is thought to be required for TGF-β signaling under physiological conditions, a study using a synthetic TGF-β3 dimer, consisting of one wild-type and one receptor-binding-deficient mutant, showed that the each pair of TβRI:TβRII heterodimers is sufficient for signaling (Huang et al. 2011).

Receptor Activation

The activities of type I and type II receptors are controlled by phosphorylation at multiple residues (Table 1). TβRII is thought to be constitutively active (Lin and Wang 1992; Lin et al. 1992), and its activity is influenced by phosphorylation. For instance, autophosphorylation at Ser213 and Ser409 is essential for signaling, whereas Ser416 phosphorylation exerts an inhibitory effect (Luo and Lodish 1997). In addition, TβRII can autophosphorylate tyrosine (Tyr) residues Tyr259, Tyr336, and Tyr424, and substitution of these three residues with phenylalanine blocks the receptor kinase activity (Lawler et al. 1997). Thus, TβRII, as well as TβRI, is a dual specificity kinase that can phosphorylate both serine/threonine and tyrosine residues (Lee et al. 2007). Additional phosphorylation sites have been identified in TβRII.
Table 1. Posttranslational modifications of transforming growth factor β (TGF-β) receptors

<table>
<thead>
<tr>
<th>Receptors</th>
<th>Sites</th>
<th>Mediators</th>
<th>Other regulators</th>
<th>Functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorylation</td>
<td>TβRI GS domain</td>
<td>TβRI</td>
<td></td>
<td>TβRI activation</td>
<td>Wrana et al. 1994; Wieser et al. 1995</td>
</tr>
<tr>
<td></td>
<td>S165</td>
<td></td>
<td></td>
<td>Required for TGF-β-mediated apoptosis, but attenuating growth inhibition and extracellular matrix (ECM) production</td>
<td>Souchelnytskyi et al. 1996</td>
</tr>
<tr>
<td></td>
<td>Tyrosine</td>
<td>Uknown</td>
<td></td>
<td>Extracellular signal-regulated kinase (ERK) activation</td>
<td>Lee et al. 2007</td>
</tr>
<tr>
<td></td>
<td>TβRII S213, S409</td>
<td>Autophosphorylation</td>
<td>TβRII activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S416, Y259, Y336, Y424</td>
<td>Autophosphorylation</td>
<td>TβRII inhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TβRII activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dephosphorylation TβRI Protein phosphatase 1 Smad7, SARA, GADD34</td>
<td>Bennett and Alphey 2002; Shi et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inhibition of TGF-β signaling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ubiquitylation TβRI Smurf1/2, WWP1, NEDD4-2 Smad7</td>
<td>Kavsak et al. 2000; Ebisawa et al. 2001; Komuro et al. 2004; Kuratomi et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receptor degradation</td>
<td>Atfi et al. 2007; Zuo et al. 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BMPRI, BMPRII, BMPRII, BMPRII Smurf1 Smad7 Receptor degradation</td>
<td>Murakami et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deubiquitylation TβRI Itch UCH37 Smad7 Receptor stabilization</td>
<td>Durrington et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wicks et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhang et al. 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhang et al. 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Al-Salih et al. 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sumoylation TβRI K389 Unknown Smad7 Receptor activation</td>
<td>Kang et al. 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zuo et al. 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neddlyation TβRI K556, K67 c-Cbl Smad7Receptor stabilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GADD34, Growth arrest and DNA damage protein; SARA, Smad anchor for receptor activation; TRAF4, tumor necrosis factor receptor-associated factor 4; USP, ubiquitin-specific protease.
TGF-β Signaling through Smads

(Souchelnytskyi et al. 1996); however, the responsible kinase(s) and functional significance of this phosphorylation are yet to be elucidated.

TGF-β ligand binding brings the type I receptor to the type II receptor at the cell surface and promotes phosphorylation of TBRII by TBRI, which is essential for TBRII activation (Cárccamo et al. 1995). Major sites of TBRII phosphorylation by TBRII are serine and threonine residues in a region that precedes the kinase domain and is enriched in glycine and serine residues, hence its name “GS domain” (Wran et al. 1994). Phosphorylation of any of the five serine or threonine residues in the GS domain (TTSGSGSG) appears sufficient for TBRII activation and signal transduction (Wieser et al. 1995). A similar mechanism involving GS domain phosphorylation activates other TGF-β family type I receptors, including those for activins and BMPs (Willis et al. 1996; Massagué 1998). TGF-β can also induce tyrosine phosphorylation of TBRII by yet-to-be-identified kinases, which contributes to TGF-β-induced extracellular signal-regulated kinase (ERK) activation (Lee et al. 2007). As phosphorylation is necessary for TBRII activation, dephosphorylation should turn off its activity. Indeed, protein phosphatase 1 (PP1) has been shown to dephosphorylate TBRII and antagonize TGF-β signaling (Bennett and Alphey 2002; Shi et al. 2004), an effect that is mediated by the membrane-associated protein Smad anchor for receptor activation (SARA) and by recruitment of the catalytic subunit of PP1 (PP1c) to the receptor (Bennett and Alphey 2002). The I-Smad Smad7 interacts with GADD34 (growth arrest and DNA damage-inducible protein 34), a regulatory subunit of the PP1 holoenzyme, within the receptor complex, and, thus, cooperates with SARA to enforce the phosphatase activity of PP1 toward TBRII (Shi et al. 2004). The regulatory subunit β of PP2A (Ser/Thr protein phosphatase 2A) has also been shown to interact with TBRI through its WD40 domain in response to TGF-β treatment and enhance TGF-β-induced growth inhibition, presumably via the kinase p70S6K (p70 S6 kinase) (Griswold-Prenner et al. 1998; Petritsch et al. 2000), but it is unclear whether PP2A modulates receptor phosphorylation. No phosphatases have been identified for TBRII so far.

Regulation of Receptor Activity by Other Posttranslational Modifications

In addition to phosphorylation, the receptor activity is regulated by a variety of posttranslational modifications (Table 1) (Kang et al. 2009; Huang and Chen 2012; Xu et al. 2012). Both TBRI and TBRII are polyubiquitylated, leading to receptor degradation (Atfi et al. 2007; Kang et al. 2009; Imamura et al. 2013; Zuo et al. 2013). Little is known about TBRII ubiquitylation (Fukasawa et al. 2010), although much attention has been devoted to TBRI ubiquitylation. Several E3 ubiquitin ligases, such as HECT (homologous with E6-associated protein carboxyl terminus) domain-containing Smurf1 (Smad-specific E3 ubiquitin protein ligase 1), Smurfl, WWP1 (WW domain containing E3 ubiquitin protein ligase 1, also known as TGF-interacting ubiquitin ligase 1 or Tiul1), and NEDD4-2 (neural precursor cell expressed, developmentally down-regulated protein 4-2, also known as NEDD4L), have been shown to mediate TBRI ubiquitylation, all by interaction with Smad7 as an adaptor to TBRI (Kavask et al. 2000; Ebisawa et al. 2001; Komuro et al. 2004; Kuratomi et al. 2005).

Like phosphorylation, ubiquitylation is a reversible process. Several deubiquitylating enzymes have been reported to remove ubiquitin from TBRI, leading to receptor stabilization and enhanced TGF-β signaling, including UCH37 (ubiquitin carboxy-terminal hydrolase 37), USP4 (ubiquitin-specific protease 4), USP11, and USP15 (Wicks et al. 2005; Al-Salihi et al. 2012; Zhang et al. 2012, 2013a). As both UCH37 and USP11 require Smad7 to bind TBRI, a question to be addressed is how Smad7 regulates the level of TBRI ubiquitylation by recruiting both E3 ubiquitin ligases and deubiquitylating enzymes (Wicks et al. 2005; Al-Salihi et al. 2012). Additional regulators could be involved; for instance, Hsp90 (heat shock protein 90) interacts with and stabilizes both TBRI and TBRII by blocking Smurfl-mediated ubiquitylation (Wrighton et al. 2008).
<table>
<thead>
<tr>
<th>Interacting partners</th>
<th>Functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TβRI</td>
<td>Enhance TGF-β signaling</td>
<td>McGonigle et al. 2001</td>
</tr>
<tr>
<td>14-3-3e</td>
<td>Interfere with receptor activation and Smad phosphorylation</td>
<td>Onichtchouk et al. 1999; Yan et al. 2009</td>
</tr>
<tr>
<td>BAMBI</td>
<td>Promote TβRI degradation</td>
<td>Razani et al. 2001; Nohe et al. 2005; Hartung et al. 2006</td>
</tr>
<tr>
<td>Caveolin-1</td>
<td>Block Smad2 release from TβRI</td>
<td>Ferrand et al. 2010</td>
</tr>
<tr>
<td>c-Ski</td>
<td>Enhance the clathrin-mediated endocytosis of TβRI and inhibit TGF-β-induced JNK activation</td>
<td>Shapira et al. 2014</td>
</tr>
<tr>
<td>Dab2</td>
<td>Target receptors for lysosomal degradation</td>
<td>Zhang et al. 2004; Su et al. 2007</td>
</tr>
<tr>
<td>Dapper2</td>
<td>Interfere with the recruitment of Smad2 and 3 to TβRI</td>
<td>Yang et al. 2012</td>
</tr>
<tr>
<td>EndoGn</td>
<td>Facilitate Smad activation</td>
<td>Chen et al. 2007</td>
</tr>
<tr>
<td>FKBP12</td>
<td>Block receptor complex formation and inhibit the basal TGF-β signaling</td>
<td>Chen et al. 1997</td>
</tr>
<tr>
<td>FKBP12</td>
<td>Attenuate TβRI internalization</td>
<td>Yao et al. 2000</td>
</tr>
<tr>
<td>Hsp90</td>
<td>Stabilize both TβRI and TβRII by blocking Smurf2-mediated ubiquitylation</td>
<td>Wrighton et al. 2008</td>
</tr>
<tr>
<td>Hrs/Hgs</td>
<td>Facilitate activation of Smad2 and Smad3</td>
<td>Miura et al. 2000</td>
</tr>
<tr>
<td>PICK1</td>
<td>Enhance its ubiquitylation and degradation in lipid rafts/caveolae</td>
<td>Zhao et al. 2012</td>
</tr>
<tr>
<td>SARA</td>
<td>Recruit the catalytic subunit of PP1 to TβRI to inactivate the receptor</td>
<td>Bennett and Alphey 2002</td>
</tr>
<tr>
<td>SARA</td>
<td>Facilitate activation of Smad2 and Smad3</td>
<td>Tsukazaki et al. 1998</td>
</tr>
<tr>
<td>ShcA</td>
<td>Promote the caveolar localization of TβRI, attenuate Smad3 signaling and activate Erk MAP kinase</td>
<td>Lee et al. 2007; Muthusamy et al. 2015</td>
</tr>
<tr>
<td>Smad7-UCH37</td>
<td>Induce TβRI deubiquitylation and stabilization</td>
<td>Wicks et al. 2005</td>
</tr>
<tr>
<td>Smad7-GADD34</td>
<td>Recruit PP1 to TβRI to inactivate the receptor</td>
<td>Shi et al. 2004</td>
</tr>
<tr>
<td>Smad7-NEDD4-2</td>
<td>Induce TβRI ubiquitylation and degradation</td>
<td>Kuratomi et al. 2005</td>
</tr>
<tr>
<td>Smad7-SIK</td>
<td>Induce degradation of the activated TβRI</td>
<td>Kowanzet et al. 2008</td>
</tr>
<tr>
<td>Smad7-Smurfl1/2</td>
<td>Induce TβRI ubiquitylation and degradation</td>
<td>Kavsak et al. 2000; Ebisawa et al. 2001</td>
</tr>
<tr>
<td>Smad7-USP11</td>
<td>Induce TβRI deubiquitylation and stabilization</td>
<td>Al-Salihi et al. 2012</td>
</tr>
<tr>
<td>Smad7-WWP1</td>
<td>Induce TβRI ubiquitylation and degradation</td>
<td>Komuro et al. 2004</td>
</tr>
<tr>
<td>STRAP</td>
<td>Promote Smad7 binding to the activated TβRI, leading to inhibition of TGF-β signaling</td>
<td>Datta and Moses 2000</td>
</tr>
<tr>
<td>Tollip</td>
<td>Interact with both Smad7 and ubiquitylated TβRI and promote TβRI degradation</td>
<td>Zhu et al. 2012</td>
</tr>
<tr>
<td>TRAF4-USP15</td>
<td>Induce TβRI deubiquitylation and stabilization</td>
<td>Zhang et al. 2013a</td>
</tr>
<tr>
<td>TRAF6</td>
<td>Mediate TβRI cleavage by TACE and γ-secretase</td>
<td>Gudey et al. 2014</td>
</tr>
<tr>
<td>TRAF6</td>
<td>Mediate p38 MAP kinase activation</td>
<td>Yamashita et al. 2008</td>
</tr>
<tr>
<td>TSC-22</td>
<td>Stabilize TβRI by impairing the association of Smad7/Smurfs to the receptor</td>
<td>Yan et al. 2011</td>
</tr>
<tr>
<td>VEPH1</td>
<td>Block Smad2 release from TβRI</td>
<td>Shathasivam et al. 2015</td>
</tr>
</tbody>
</table>

Continued
Sumoylation is a ubiquitylation-like post-translational modification, regulating protein activity and subcellular localization (Floto and Melchior 2013). TbRI, but not other type I receptors, can be sumoylated (Kang et al. 2008). The sumoylation at Lys389 in the kinase domain of TbRI is important for TGF-β signaling, but its mediator is unknown. As TbRI sumoylation is induced by TGF-β and requires the kinase activities of TbRI and TbRII (Kang et al. 2008), receptor phosphorylation may control this process.

TbRII can be “neddylated” (i.e., linked to the ubiquitin-like protein NEDD8) (Zuo et al. 2013), a modification that regulates protein activity, subcellular localization, and stability (Rabut and Peter 2008; Watson et al. 2011). TbRII neddylation is mediated by the proto-oncogene c-Cbl, an E3 ligase for both ubiquitin and NEDD8 (Thien and Langdon 2001; Oved et al. 2006), and stabilizes TbRII by antagonizing its ubiquitylation and lipid raft-mediated endocytosis (Zuo et al. 2013).

Regulation of Receptors by Their Interacting Proteins

Numerous proteins have been reported to interact with TGF-β receptors (Table 2), many of them as negative regulators (reviewed in Kang et al. 2009; Lönn et al. 2009). The best-characterized protein is the I-Smad, Smad7, which associates with activated type I receptors (Hayashi et al. 1997; Nakao et al. 1997). Smad7 antagonizes TGF-β signaling through multiple mechanisms, including interfering with R-Smad recruitment, promoting receptor dephosphorylation, recruiting E3 ubiquitin ligases to induce receptor degradation, and blocking the functional Smad complex from interacting with DNA in the nucleus (reviewed in Yan and Chen 2011). The pseudoreceptor BAMBI (BMP and activin membrane-bound inhibitor) inhibits TGF-β family signaling by directly forming a complex with TGF-β, activin, and/or BMP receptors to generate an inactive receptor complex (Onichtchouk et al. 1999; Sekiya et al. 2004a), or by binding and enforcing the inhibitory effect of Smad7 on TGF-β signaling (Yan et al. 2009). BAMBI expression is induced by Wnt/β-catenin signaling and repressed by Toll-like receptor 4 (TLR4) signaling, thus allowing for cross talk of these pathways with TGF-β signaling (Sekiya et al. 2004b; Seki et al. 2007). Serine-threonine kinase receptor-associated protein (STRAP), a WD domain-containing protein, can interact with both TbRI and TbRII (Datta et al. 1998) and promote Smad7 binding to the activated TbRI, leading to inhibition of TGF-β signaling (Datta et al. 1998; Datta and Moses 2000). Tollip, which contains both ubiquitin-associated domains and an endosome-targeting domain, can interact with both Smad7 and ubiquitylated TbRI to promote TbRI degradation via the endosome.
docytic pathway (Zhu et al. 2012). The salt-inducible kinase (SIK), a TGF-β-inducible gene, was reported to cooperate with Smad7 to induce degradation of the activated TβRII, creating another negative feedback regulation of TGF-β signaling (Kowanetz et al. 2008). In addition, the basal activities of the TGF-β family type I receptors are controlled by FKB12 (Wang et al. 1996; Chen et al. 1997; Huse et al. 1999; Spierkerkoetter et al. 2013), possibly by preventing the spontaneous formation of type I and type II receptor complex (Chen et al. 1997) or by forming a complex with Smad7 and Smurf1 and promoting ubiquitylation and degradation of type I receptors (Yamaguchi et al. 2006). Two WD-repeat proteins that regulate translation initiation factors (eIFs), eIF2α and eIF3 (also called TRIP-1 for TGF-β receptor-interacting protein-1), associate with and are phosphorylated by TβRII. Both of them exert an inhibitory effect on TGF-β signaling (Chen et al. 1995; Choy and Derynck 1998; McGonigle et al. 2002).

In contrast to the above-mentioned proteins that negatively regulate receptor activity, a few proteins that facilitate TGF-β signaling have been identified. TSC-22 (TGF-β-stimulated clone 22) is a TGF-β target that suppresses cell proliferation and promotes differentiation (Kawamata et al. 2004). It may promote TGF-β signaling by interacting with Smad4 and enhancing the transcriptional activities of Smad proteins (Choi et al. 2005) or by interacting with TβRI and Smad7 in a mutually exclusive manner to impair the association of Smad7 and Smurfs with TβRI, thereby preventing receptor degradation (Yan et al. 2011). 14-3-3ε has also been shown to interact with TβRI and enhance TGF-β signaling (McGonigle et al. 2001), but the underlying mechanism for this enhancement is unclear.

Proteolytic Cleavage of TβRI

Many cell-surface receptors are proteolytically cleaved to release their extracellular or intracellular fragments. Two groups have reported proteolytic cleavage of TβRI. Liu et al. (2009) found that on Erk mitogen-activated protein kinase (MAPK) activation, the metalloproteinase tumor necrosis factor-α converting enzyme (TACE, also known as ADAM17) cleaves TβRI, but not TβRII. This cleavage decreases the cell-surface level of TβRI and down-regulates TGF-β-mediated Smad3 activation, antiproliferation and epithelial-mesenchymal transition. It has also been reported that, following TACE-mediated cleavage of TβRI at Gly120 and Leu121, the released intracellular fragment translocates to the nucleus, interacts with the p300 acetyltransferase, activates invasion-related genes and promotes TGF-β-mediated invasiveness of cancer cells (Mu et al. 2011). The binding of tumor necrosis factor receptor-associated factor 6 (TRAF6) to TβRI is required for this process as TRAF6 recruits protein kinase Cζ (PKC-ζ), which regulates the subcellular localization of TβRI and promotes TACE-mediated TβRI cleavage (Mu et al. 2011). Defining the physiological role of the cleaved TβRI intracellular fragment requires further investigation. TACE can also cleave the transmembrane protein vasoactive intestinal peptide to release a soluble form that binds and inhibits TGF-β (Malapeira et al. 2011). TACE expression can be induced by TGF-β (Lu et al. 2011). In addition, genetic polymorphism analysis revealed that TACE functions in angiogenesis by acting as a modifier of TGF-β signaling in mice and humans (Kawasaki et al. 2014). These observations add multiple layers of complexity to the TACE/TGF-β relationship and shed light on the critical role of TACE as a modifier of the TGF-β signaling pathway. TRAF6 can also elicit TβRI proteolytic cleavage by recruiting presenilin 1, a catalytic subunit of the γ-secretase complex (Gudey et al. 2014). γ-Secretase can cleave numerous transmembrane proteins, including amyloid protein precursor and Notch (De Strooper et al. 2012). The presenilin 1–mediated cleavage occurs between Val129 and Ile130 in the transmembrane domain of TβRI after the TACE cleavage and is promoted by TGF-β stimulation (Gudey et al. 2014). Like the TACE-cleaved TβRI intracellular fragment, the presenilin 1–released fragment stimulates the expression of cell-invasion-related genes, such as Snail1 (encoding Snail) and Jag1 (Jagged1) (Gudey et al. 2014). A recent study reported that TRAF6-mediated TβRI...
cleavage is regulated by the scaffold protein Ran-binding protein M (RanBPM), which interacts with TβRI and prevents its association with TRAF6 and its subsequent cleavage and nuclear accumulation of the intracellular fragment (Zhang et al. 2014). As this fragment was observed in the nuclei of malignant tumors (Mu et al. 2011; Gudey et al. 2014), these results underscore the role of the finely regulated proteolytic cleavage of TβRI in tumorigenesis.

THE SMAD FAMILY OF SIGNALING MEDIATORS

TGF-β family ligands exhibit context-dependent activities mainly by regulating gene expression through receptor-mediated activation of Smad proteins. As critical mediators of TGF-β signaling, various modes of regulation feed into the Smad proteins to modulate signal intensity, duration, and specificity (Massagué 2012). Both R-Smad and co-Smad proteins comprise two highly conserved domains known as Mad homology 1 (MH1) and MH2 domains (Fig. 2). The amino-terminal MH1 domain contains nuclear localization signals and a β-hairpin structure that is critical for DNA binding (Fig. 2) and association with a subset of microRNA (miRNA) primary transcripts (pri-miRNAs). The carboxyl MH2 domain encompasses the L3 loop structure that specifies the interaction of the R-Smads with type I receptors (Lo et al. 1998), leading to the phosphorylation of the carboxy-terminal SSXS motif of R-Smads by the type I receptor kinases. The MH2 domain of Smad4 contains an L3 loop (Lo et al. 1998), but lacks the carboxy-terminal SSXS motif, and is not phosphorylated by the type I receptor (Fig. 2). The type I receptor–mediated phosphorylation of the carboxy end of R-Smads triggers its association with the MH2 domain of Smad4. The heteromeric Smad complex, which is a trimer of two R-Smads and one Smad4, translocates to the nucleus and binds to DNA through the MH1 domain (Massagué 2012). In the nucleus, the MH2 domain interacts with various nuclear factors and controls gene expression by modulating transcription or the epigenetic landscape (Moustakas and Heldin 2009; Massagué 2012; Weiss and Attisano 2013).

The MH1 and MH2 domains are connected by a linker region, which is not conserved among Smad proteins. The linker regions of R-Smads contain multiple serine and threonine residues that are phosphorylated by kinases, such as cyclin-dependent kinases (CDKs), MAPKs, and glycogen synthase kinase 3 (GSK3) (Massagué 2012). Phosphorylation of R-Smads in the linker region controls their nuclear residency and creates docking sites for positive and negative modulators of nuclear R-Smad (Massagué 2012). Smad linker phosphorylation is discussed in detail below (Fig. 2).

The third class of Smad proteins represents the I-Smads, which antagonize the TGF-β signaling pathway by R-Smads and co-Smad (Fig. 2). Unlike R-Smads, I-Smads, which include Smad6 and Smad7, lack an MH1 domain and the SSXS motif, but retain a conserved MH2 domain and negatively regulate signaling (Fig. 2). Both TGF-β- and BMP-specific Smad complexes induce the expression of I-Smads to form a negative feedback loop. I-Smads antagonize the Smad signaling pathway at multiple levels by (1) associating with the type I receptor, (2) recruiting Smurf1 or Smurf2 E3 ubiquitin ligases, (3) binding the receptor-phosphorylated R-Smads and interfering with the association with co-Smad, or (4) interacting with DNA and nuclear Smad complexes. Smad7 acts as a general inhibitor of all TGF-βs, whereas Smad6 preferentially blocks BMP signaling (Moustakas and Heldin 2009; Massagué 2012; Weiss and Attisano 2013).

ACTIVATION OF Smads BY THE RECEPTOR COMPLEXES

Upon ligand binding, TβRIi-mediated phosphorylation of the GS domain of TβRI induces a conformational change that activates the TβRI kinase and enhances the binding affinity of the receptor for Smad2 and Smad3 (Huse et al. 1999, 2001), by creating a binding site for a highly basic surface patch in the MH2 domain of R-Smads (Wu et al. 2000). Phosphorylation of the last two serine residues (SXS) at the carboxy end of R-Smads (Abdollah et al. 1997;
Kretzschmar et al. 1997; Liu et al. 1997; Souchelnytskyi et al. 1997) by the type I receptor enables the association of R-Smads with co-Smad (Smad4) and, consequently, the interaction of the Smad complex with other factors to regulate gene expression in the nucleus (Shi and Massagué 2003; Feng and Derynck 2005).

Presentation of Smads to Receptors

Several receptor- or Smad-interacting proteins regulate the activation of Smad2 and Smad3. The FYVE domain-containing protein SARA has been described earlier. It promotes the activation of Smad2 and Smad3 by binding and...
recruiting to the receptor, and facilitating phosphorylation by the receptor kinase (Tsukazaki et al. 1998; Wu et al. 2000). The FYVE domain associates with phosphatidylinositol-3-phosphate, which is enriched in the early endosome (Schink et al. 2013), where SARA facilitates TGF-β/Smad signaling (Itoh et al. 2002) with the help of the promyelocytic leukemia (PML) tumor suppressor (Lin et al. 2004). Another FYVE domain-containing protein, hepatic growth factor-regulated tyrosine kinase substrate (Hrs/Hgs), has also been shown to interact with Smad2, and may play a role similar to SARA to promote TGF-β/activin signaling (Miura et al. 2000). Transmembrane prostate androgen-induced (TMEPAI) interacts with Smad2 and Smad3 and competes with SARA for Smad binding, thereby attenuating Smad activation (Watanabe et al. 2010). As TMEPAI expression is induced by TGF-β stimulation, it generates a negative feedback loop to control TGF-β signaling (Watanabe et al. 2010). Like TMEPAI, its homolog C18 ORF1 can also interfere with the interaction of Smad2 and Smad3 with SARA and, thus, attenuates Smad recruitment to TβRI (Nakano et al. 2014). Similarly, ERBIN (ERBB2/HER2-interacting protein), a SARA-interacting protein, inhibits TGF-β signaling by competing with SARA for the association with Smad2 and Smad3 and inhibiting their activation (Sflomos et al. 2011). Although all of these studies support the role of SARA in promoting TGF-β signaling, it was reported that silencing SARA expression using small interfering RNA (siRNA) has no effect on TGF-β signaling in HeLa cells (Balkebe et al. 2012), which might be caused by incomplete down-regulation of SARA expression and/or a redundant functions of Hrs/Hgs. Nonetheless, more genetic evidence, such as targeted inactivation of SARA expression, is required to clarify the role of SARA in TGF-β signaling. Endoﬁn (endosome-associated FYVE-domain protein), a FYVE domain-containing and early endosome-localized protein that shares sequence similarity with SARA (Seet and Hong 2001) can enhance TGF-β signaling by facilitating Smad4 recruitment to the activated Smad2 and Smad3 (Chen et al. 2007). Endoﬁn also acts as an anchor for BMP-specific R-Smad in the context of BMP receptor-dependent activation, analogous to the function of SARA in TGF-β receptor signaling (Shi et al. 2007; Goh et al. 2015). The molecular mechanism underlying endoﬁn’s multiple activities and the regulation of each activity need to be resolved in the future.

It was originally proposed that Axin, a negative regulator of Wnt signaling, interacts with Smad3 and facilitates its activation by TGF-β under conditions, in which Smad3 is expressed at higher than normal levels (Furuhashi et al. 2001), but it was later found that Axin reduces the level of Smad3 protein by promoting ubiquitylation and degradation (Guo et al. 2008). Furthermore, Axin acts as a scaffold protein to bring together Smad7 and the E3 ubiquitin ligase RNF111 (RING finger protein 111, also known as Arkadia) to promote Smad7 degradation (Liu et al. 2006). Therefore, the regulatory role of Axin in TGF-β signaling is pleiotropic and likely context-dependent. Dok-1 (Docking protein 1, also known as p62), a Ras-GAP (Ras GTPase-activating protein)-binding protein, has been reported to interact with Smad3 and with both the type I and type II activin receptors, therefore acting as an adaptor to bridge the activin receptors with Smad proteins to promote B-cell apoptosis (Yamakawa et al. 2002). DRAK2, which is a death-associated protein kinase (DAPK) family member and was identified by mass spectrometry-based proteomic screen of TβRI-associated proteins, is induced by TGF-β and antagonizes TGF-β/Smad signaling by interfering with the recruitment of Smad2 and 3 to TβRI (Yang et al. 2012). Ventricular zone expressed PH domain-containing 1 (VEPH1), the human ortholog of Drosophila Melted, however, blocks TGF-β by impeding Smad2 release from TβRI (Shathasivam et al. 2015). Similarly, c-Ski, which disrupts the functional R-Smad–Smad4 complex or represses Smad transcriptional activity (Deheuninck and Luo 2009), can also impair the activation and subsequent nuclear translocation of Smad2 by inducing its stable interaction with TβRI (Ferrand et al. 2010).

Several proteins have been indicated to balance TGF-β-induced Smad signaling against...
non-Smad signaling. In addition to its regulatory function in modulating the trafficking of TβRII from the early endosome to the recycling endosome (Penheiter et al. 2010), the adaptor protein Disabled-2 (Dab2) can associate with and facilitate the activation of Smad2 and Smad3 by TGF-β (Hocevar et al. 2001). Dab2 also interacts with TβRI, enhances its clathrin-mediated endocytosis, and inhibits TGF-β-induced JNK (c-Jun amino-terminal kinase) activation (Shapira et al. 2014). In contrast, the adaptor protein ShcA (also known as Shc1) can sequester TβRI in caveolin-1-positive compartments and promote Erk and Akt signaling while attenuating Smad3 signaling (Muthusamy et al. 2015). These results are consistent with the requirement of lipid raft localization of TGF-β receptors for TGF-β-mediated MAPK activation (Zuo and Chen 2009). The membrane compartmentalization of TβRI is also regulated by PICK1 (protein interacting with carboxykinase 1) that enhances the TβRI interaction with caveolin-1 and promotes the caveolae-mediated internalization of TβRI, enhancing its degradation (Zhao et al. 2012). Similarly, the localization of BMP receptors in distinct membrane domains also modulates BMP signaling. BMP receptors mediate BMP-induced Smad1 and Smad5 phosphorylation in non-raft membrane regions, whereas their localization in lipid rafts is required for BMP-stimulated expression of alkaline phosphatase (Hartung et al. 2006). Several other receptor-interacting proteins link TGF-β receptors to non-Smad signaling, such as TRAF6 in TGF-β-mediated activation of MAPKs and Par6 in TGF-β-induced epithelial-mesenchymal transition (Table 2).

Specificity of Smad Activation by the Receptors

Two major Smad pathways are activated in response to TGF-β family proteins. In response to TGF-β and TGF-β/activin-like proteins, Smad2 and Smad3 are specifically phosphorylated at their carboxy-terminal tails by the type I receptors ACVRL1/ALK-1, ACVR1/ALK-2, BMPRIA/ALK-3, and BMPRIB/ALK-6 receptors (Massagué and Chen 2000; Feng and Derynck 2005). Considering that the receptors and R-Smads are highly conserved, great attention has been given to how the specific activation of R-Smads is achieved. Detailed functional mapping of the regions in the TβRI/ALK-5 receptor identified a critical role of the L45 loop between its kinase subdomains IV and V in specifying TGF-β responses (Feng and Derynck 1997). Swapping the L45 loop sequence between the TβRI/ALK-5 and BMPRIB/ALK-6 receptors can switch the signaling specificity in Smad activation and transcriptional responses (Chen et al. 1998; Persson et al. 1998). The L45 loop is not required for the kinase activity of the type I receptors, but determines the specificity of the Smad interaction (Chen et al. 1998; Yu et al. 2002; Itoh et al. 2003). Similarly, the search for the regions in Smad2 that is important for the interaction with TβRI/ALK-5 identified the L3 loop in the MH2 domain (Lo et al. 1998). The exchange of two amino acid residues in the L3 loop sequence of human Smad1 (His425 and Asp428) and human Smad2 (Arg427, Thr430) can switch the specific receptor-Smad interaction and Smad activation. The L45 loop of the type I receptors functionally interacts with the L3 loop of R-Smads (Chen et al. 1998; Wu et al. 2000). Interestingly, although the L45 loop of TβRI/ALK-5 is essential for Smad signaling, it is not important for TGF-β-induced activation of the MAP kinases p38 and JNK (Yu et al. 2002; Itoh et al. 2003).

NUCLEOCYTOPLASMIC SHUTTLING AND INTRACELLULAR MOVEMENT OF Smads

Regardless of the presence or absence of ligands, Smads constantly shuttle between the cytoplasm and the nucleus. Receptor-mediated phosphorylation and association with Smad4 retain R-Smads in the nucleus, where they function as transcription factors and miRNA regulators.
Therefore, nuclear transport offers another level of regulation in the control of Smad activity (Reguly and Wrana 2003; Xu and Massagué 2004; Hill 2009). Smad proteins can be transported into the nucleus via importin-mediated or nuclear pore protein-mediated mechanisms. Although Smad1, Smad2, Smad3, and Smad4 contain Lys-rich nuclear localization signal (NLS)-like motifs in the MH1 domains (Fig. 1), their modes of nuclear import are distinct. Through their NLS-like motifs, Smad3 and Smad4 interact with and are transported by importin-β and importin-α, respectively (Xiao et al. 2000, 2003b; Kurisaki et al. 2001). Smad2, Smad3, and Smad4 can also be imported into the nucleus by directly interacting with the nuclear pore proteins Nucleoporin 153 (Nup153) and Nup214 (Xu et al. 2002, 2003). In addition, importin 7 and 8 and their Drosophila ortholog Msk may also mediate nuclear import of Smad1, Smad2, and Smad3 (Xu et al. 2007).

The nuclear export of Smad4 is mediated by exportin 1 (also known as CRM1), as apparent by the nuclear accumulation of Smad4 in the presence of the exportin 1 inhibitor leptomycin B, even in the absence of ligand (Pierreux et al. 2000; Watanabe et al. 2000), and requires a nuclear export signal (NES) in the linker region of Smad4 (Fig. 2) (Watanabe et al. 2000). Smad1 uses a similar mechanism for nuclear export and two NES sequences have been identified (Xiao et al. 2001, 2003a). Although these two NES sequences are conserved in Smad2 and Smad3, they do not mediate the nuclear export of Smad2 and Smad3. The nuclear export of Smad3 is instead mediated by exportin 4 and a Ran GTase (Kurisaki et al. 2006). RanBP3, which is known as a cofactor of exportin 1 (Lindsay et al. 2001), preferentially recognizes dephosphorylated Smad2 and Smad3 and exports them from the nucleus (Dai et al. 2009). Exportin 4 and RanBP3 do not display extensive sequence similarity, and it is unknown whether they share the same export machinery. In a similar manner, RanBP3L recognizes dephosphorylated Smad1, Smad5, and Smad8 and mediates their nuclear export in a Ran-dependent fashion (Chen et al. 2015).

Several models have been proposed for ligand-induced Smad nuclear accumulation. One of them is the cytoplasmic retention model, which is supported by several lines of evidence. Smad proteins are retained in the cytoplasm in the absence of ligands, whereas receptor-mediated phosphorylation favors their stay in the nucleus by enhancing their interaction with nuclear factors. SARA, for example, can sequester inactive Smad2 and Smad3 in the cytoplasm (Xu et al. 2000). Akt/PKB (protein kinase B) can also directly interact with Smad3 to block its phosphorylation and nuclear accumulation, and this effect is independent of the kinase activity of Akt/PKB (Conery et al. 2004; Remy et al. 2004). After Smads enter the nucleus, they can be retained in the nucleus through their association with DNA and nuclear proteins, such as Fast1/FoxH1 (Xu et al. 2002) and TAZ (Varelas et al. 2008). In the case of Smad3, receptor-mediated phosphorylation can increase its interaction with importin β and promote nuclear import (Kurisaki et al. 2001). The nuclear accumulation of Smad4 may depend on its interaction with nuclear R-Smads. For instance, phospho-Smad3 can block Smad4 interaction with exportin 1, therefore promoting nuclear accumulation of Smad4 (Chen et al. 2005). Dephosphorylation of R-Smads by phosphatases, such as PPM1A, may promote their nuclear export (Lin et al. 2006).

The nucleocytoplasmic shuttling of Smads is not only regulated by TGF-β family ligands, but also by other signaling events. The phosphorylation of the linker region of R-Smads by Erk MAPK (Kretzschmar et al. 1997), CDKs (Matsuura et al. 2004; Wang et al. 2009), and GSK3β (Fuentealba et al. 2007; Millet et al. 2009) has been shown to inhibit Smad nuclear accumulation. Thus, intracellular signals are integrated to control the subcellular localization of Smad proteins and finely tune TGF-β signaling (Schmierer et al. 2008).

Smad intracellular trafficking between the cell membrane and the nucleus is also under the control of microtubules and associated motor proteins, such as kinesin (Batut et al. 2007). Dynein light chain protein km23-1 (DYNLRB1) plays a role in Smad movement toward the nu-
nucleus after activation by the receptor kinases (Jin et al. 2009). These studies imply that Smad movement within the cell is an active and directed process but not passive diffusion.

POSTTRANSLATIONAL MODIFICATIONS OF SMADs AND MODULATION OF THEIR ACTIVITY

In addition to the two critical regulatory steps that lead to Smad activity (i.e., phosphorylation of the SSXS motif and nucleocytoplasmic trafficking), Smad proteins are subject to various posttranslational modifications that occur upon specific stress or growth factor stimulation. In the section below, we summarize well-described posttranslational modifications found in Smad proteins.

Ubiquitylation and Sumoylation

E3 ubiquitin ligases are recruited to Smad proteins to promote ubiquitin-mediated degradation of Smads and Smad partners. Smurfs and other HECT domain E3 ligases contain WW (Pro–Pro–X–Tyr) motifs in the linker region of R-Smads and I-Smads (Fig. 2). Both R-Smads and I-Smads recruit HECT domain E3 ligases to target either their own degradation or that of binding partners. I-Smads recruit Smurfs to the receptors and trigger their ubiquitin-mediated degradation (Murakami et al. 2003; Ogunjimi et al. 2005). Upon TGF-β stimulation, R-Smads recruit Smurfs and mediate degradation of the transcriptional co repressor SnoN (also known as Ski-like), which in turn promotes transcriptional regulation by the Smad complex (Deheuninck and Luo 2009). Smurf1 causes degradation of BMP-regulated R-Smads and inhibits BMP signaling (Zhu et al. 1999). Smurf1 also modulates the inhibitory activity and the stability of Smad7 and, hence, the TGF-β signaling output (Zhu et al. 1999; Suzuki et al. 2002). Smurf2 is also known to mediate target degradation of the TGF-β-regulated R-Smads (Lin et al. 2000; Zhang et al. 2001). The HECT domain E3 ligase NEDD4-2 causes degradation of Smad2 (Kuratomi et al. 2005) and Smad4 (Morén et al. 2005).

Members of the RING-finger class of E3 ligases also mediate degradation of Smads or Smad partners. RNF111/Arkadia induces Smad7 ubiquitylation and degradation to promote nodal signaling. Upon TGF-β treatment, RNF111 interacts with R-Smads, mediates degradation of the corepressors Ski and SnoN, and facilitates transcriptional regulation by the Smad complex (Levy et al. 2007; Nagano et al. 2007; Le Scolan et al. 2008). The RING finger E3 ligase complex SCF (Skp1, Cullin1, and Fbw1a)/ROC mediates TGF-β-dependent degradation of Smad3 and Smad4 and termination of TGF-β signaling (Fukuchi et al. 2001; Wan et al. 2004), whereas the U-Box-dependent E3 ligase STUB1 (STIP1 homology and U-Box containing protein 1, also known as CHIP) negatively regulates the BMP-regulated R-Smads and Smad-mediated signaling (Li et al. 2004). Another RING finger E3 ligase, anaphase-promoting complex (APC), interacts with Smad3, mediates ubiquitin-dependent degradation of SnoN, and promotes TGF-β signaling (Stroschein et al. 2001).

In addition to promoting the proteosomal degradation of Smad proteins or their partners, monoubiquitylation can modulate Smad activities. In the MH2 domain of Smad3, ablation of lysine residues that are monoubiquitylated by Smurf2 has no impact on protein stability but inhibits Smad3 signaling (Tang et al. 2011). Conversely, the deubiquitylating enzyme USP15 reverses this modification and restores responsiveness to TGF-β (Inui et al. 2011). The RING ubiquitin ligase TRIM33 (tripartite motif containing 33, also known as TIF1γ or ectodermin) monoubiquitylates Smad4 in the MH2 domain and efficiently inhibits both TGF-β and BMP signaling, presumably by disrupting the R-Smad/Smad4 complex and promoting Smad4 translocation to the cytoplasm (Dupont et al. 2005). The deubiquitylating enzyme USP9X (also known as FAM) reverts the effects of TRIM33 on Smad4 and restores TGF-β signaling (Dupont et al. 2009). Ubiquitylation of Smad4 by TRIM33 is regulated by association of the PHD finger-bromo domain of TRIM33.
with unmodified histone H3 tails (Agricola et al. 2011). TRIM33 also competes with Smad4 for binding to phosphorylated Smad2 and Smad3 and, thus, mediates TGF-β-induced and Smad4-independent responses, such as erythroid differentiation in hematopoiesis (He et al. 2006). TRIM33 forms a complex with activated R-Smads, binds to the promoter region of nodal target genes characterized by H3K9 (histone H3 Lys9) trimethylation and H3K18 (histone H3 Lys18) acetylation, and displaces the chromatin-compacting factor chromobox homolog 3 (CBX3, also known as HP1γ) (Xi et al. 2011). This process is a prerequisite for the transcriptional activation of nodal target genes by the Smad complex during differentiation of embryonic stem cells (Xi et al. 2011). Future studies must assess how general the requirement of TRIM33 is for Smad-dependent gene regulation, and what determines whether TRIM33 activates or represses target genes.

Similar to ubiquitylation, sumoylation is a multistep posttranslational modification in which SUMO (a small ubiquitin like modifier protein) is attached to the target protein. Sumoylation of Smad4 by the E2 SUMO ligase Ubc9 and the PIAS (protein inhibitor of activated STAT-1) family members of the E3 SUMO ligases has been implicated in the increased level of nuclear Smad4 and the activation of both TGF-β and BMP signaling (Lee et al. 2003; Lin et al. 2003; Shimada et al. 2008). However, sumoylation of Smad4 can also suppress TGF-β and BMP signaling by repressing the transcriptional activity of Smad4 (Long et al. 2004; Yuki et al. 2012).

Acetylation and ADP-Ribosylation

Both R-Smads and Smad7 are substrates of acetyltransferases. Acetylation of Smad2 and Smad3 in the MH1 or MH2 domains appears to promote TGF-β signaling by enhancing the transactivation activity of Smad proteins (Inoue et al. 2007). Acetylation of Smad7 by the histone acetyltransferase p300 protects Smad7 from proteasomal degradation, as the acetylation occurs at the same lysine residues that the E3 ubiquitin ligase Smurf1 would otherwise ubiquitylate, and also increases Smad7 stability and inhibits TGF-β signaling (Grönroos et al. 2002). Smad3 and Smad4 are also subject to poly-ADP ribosylation by poly(ADP-ribose) polymerase-1 (PARP-1), a modification that interferes with Smad DNA binding and, thus, attenuates transcription (Lönn et al. 2010).

Linker Phosphorylation

The linker region between the MH1 and MH2 domains of Smads is rich in serine and proline residues, which provide prime target sites for modulation of Smad signaling in response to growth factors and other signaling cascades. Signaling pathways cross talk exerts great impact during embryogenesis and in homeostatic processes to generate complex context-dependent biological responses (Moustakas and Heldin 2009; Massague 2012; Weiss and Attisano 2013). Smad proteins that are actively engaged in transcription can be phosphorylated in the linker region by cyclin C-CDK8 or cyclin T-CDK9 (Alarcon et al. 2009; Gao et al. 2009). This phosphorylation step primes the secondary phosphorylation of the linker region by GSK3, generates binding sites for E3 ubiquitin ligases, such as Smurf1 and NEDD4-2, and targets Smad proteins for degradation (Alarcon et al. 2009; Gao et al. 2009). Linker phosphorylation by CDK8 or CDK9 also triggers the recruitment of Yes-associated protein (YAP), a signal transducer of the Hippo pathway (Alarcon et al. 2009), or Pin1 (peptidylprolyl cis/trans isomerase) (Nakano et al. 2009; Matsuura et al. 2010; Aragon et al. 2011; Shen et al. 2012; Ueberham et al. 2014), which modulate the nuclear activity of Smads.

Dephosphorylation of Smads

Following the activating phosphorylation of R-Smad proteins at their carboxyl terminus and inhibitory phosphorylation in the linker region, different phosphatases can reverse the phosphorylation to control the duration and intensity of the Smad signal. Both linker phosphorylation and receptor-mediated carboxy-terminal phosphorylation of R-Smad proteins

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a022061

TGF-β Signaling through Smads
can be reversed by small carboxy-terminal domain phosphatases (SCP) 1, 2, and 3 (Sapkota et al. 2006; Bruce et al. 2012). The effects of SCP1, 2, and 3 on TGF-β-regulated and BMP-regulated Smads are different, as SCP1, 2, and 3 undo the phosphorylation of the linker but not of the carboxy terminal of Smad2 and Smad3, and thus enhance TGF-β signaling (Sapkota et al. 2006). On the contrary, SCP1, 2, and 3 dephosphorylate both the linker and carboxyl terminus of Smad1, resulting in an overall inhibitory effect on BMP signaling (Sapkota et al. 2006). It is still unclear, however, how the activities of SCP1, 2, or 3 are regulated and coordinated with the phosphorylation step.

The Bb subunit of PP2A interacts with the BMP receptors and mediates Smad1 dephosphorylation, mainly in the linker region, leading to amplification of BMP signaling (Bengtsson et al. 2009). The Bo subunit of PP2A, however, interacts with the TGF-β receptor and modulates TGF-β signaling (Griswold-Prenner et al. 1998; Petritsch et al. 2000). PPM1A, the prototype of metal ion-dependent protein phosphatases, also known as PP2C, is the only phosphatase shown to dephosphorylate Smad2 and Smad3 at their carboxy-terminal SXS motif (Lin et al. 2006), whereas several phosphatases can mediate carboxy-terminal dephosphorylation of Smad1. In addition to SCPs (Sapkota et al. 2006), which dephosphorylate the carboxyl terminus of Smad1 to terminate BMP signaling (Duan et al. 2006; Zhao et al. 2014), PPM1H has also been reported to interact with and dephosphorylate activated Smad1 (Shen et al. 2014). An RNA interference screen identified pyruvate dehydrogenase phosphatase (PDP) as a phosphatase for Mad, the homolog of Smad1 and Smad5 in Drosophila, that inactivates decapentaplegic (Dpp)/Mad signaling (Chen et al. 2006). Myotubularin-related protein 4 (MTMR4), a FYVE domain-containing dual-specificity protein phosphatase, can dephosphorylate Smad1, Smad2, and Smad3 in the early endosome and block their nuclear accumulation, functioning as a general negative regulator for both TGF-β and BMP signaling (Yu et al. 2010, 2013). Further studies are required to elucidate the mechanism that regulates the activity of phosphatases, which are critical determinants of the duration and intensity of the Smad signal.

REGULATION OF TARGET GENES BY Smads AND THEIR PARTNERS

Once located in the nucleus, Smad complexes can directly bind DNA and modulate transcription. Smad complexes bind with low affinity to a DNA sequence known as either the “Smad-binding element” (SBE) (i.e., GTCT or AGAC) or a GC-rich sequence, and require DNA binding transcription factors as partners to increase specificity and DNA binding affinity. Many DNA binding partners of Smads are tissue-specific transcription factors and, thus, are essential in mediating context-dependent gene regulation. A variety of DNA binding partners of the Smad complex has been identified, including chromatin modifiers, such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), or DNA cytosine-5-methyltransferase 3A (DNMT3A), which removes repressive DNA methylation and activates transcription in a TGF-β-inducible manner (Thillainadesan et al. 2012).

DNA binding partners are often prime recipients of cross talk input from other signaling pathways. For example, Wnt cooperates with BMP and TGF-β through co-occupancy of Smad target enhancers by Wnt-activated lymphoid enhancer-binding factor 1 (LEF1, also known as TCF1a) and transcription factor 7-like 2 (TCF7L2) transcription factors (Labbé et al. 2000, 2007; Nakano et al. 2010). Also, the interaction between Smad proteins and FoxO factors provides an integration point of the Akt and TGF-β pathways (Seoane et al. 2004; Naka et al. 2010). Cross talk can also be achieved at the level of Smad target genes. For example, in epithelial cells, the TGF-β-activated Smad complex stimulates the expression of ATF3 (activating transcription factor 3) and Snail1, which then cooperates with Smads to repress ID1 and CDH1, encoding E-cadherin,
Figure 3. (Legend continued on following page.)
and mediates epithelial to mesenchymal transition (Kang et al. 2003; Vincent et al. 2009).

REGULATION OF miRNA EXPRESSION BY SMADS

miRNAs are small (~22 nucleotides) noncoding RNAs that associate with a partially complementary sequence often found in the 3’-untranslated region (UTR) of target mRNAs, and repress their expression either by promoting mRNA degradation or inhibiting translation (Siomi and Siomi 2010; Ha and Kim 2014). The biosynthesis of miRNAs begins with transcription of miRNA genes by RNA polymerase II to generate long primary transcripts known as pri-miRNAs. These contain one or more stable stem-loop structures that will give rise to mature miRNA sequence(s) after two sequential cleavage steps by the RNase III enzymes Drosha and Dicer (Fig. 3A) (Ha and Kim 2014). Gene regulation by miRNAs is an integral component of the control of gene expression exerted by the TGF-β family of ligands (Blahna and Hata 2012, 2013). Because a single miRNA is capable of modulating more than 100 mRNAs simultaneously (Lim et al. 2005; Blahna and Hata 2012), regulation of even a few miRNAs can affect the expression of hundreds of genes and contribute to tissue- and time-controlled biological outcomes mediated by TGF-β family ligands. In general, TGF-β signaling modulates miRNA expression both transcriptionally, via DNA binding activity of Smad complexes, and posttranscriptionally, via the RNA binding activity of R-Smads, as summarized below.

Transcriptional Regulation of miRNA Expression by Smads

Because the promoter structure of genes encoding miRNAs closely resembles that of protein coding genes (Corcoran et al. 2009), Smad complexes control the transcription of miRNA genes by binding to SBEs in their promoter (Figs. 2,3B). In addition, Smads can indirectly modulate miRNA levels through activation of transcription factors that regulate the miRNA promoter activity (Fig. 3B). For instance, during epithelial to mesenchymal transition, the miR-200 family of miRNAs is repressed by TGF-β through induction of the transcriptional repressors ZEB1 (also known as ðEF1) and ZEB2 (also known as SIP1) (Gregory et al. 2008). These factors directly bind an E-box...
proximal promoter element and repress the transcription of miR-200, and are reciprocally targeted by miR-200 (Burk et al. 2008; Korpal et al. 2008).

Posttranscriptional Regulation of miRNA Biogenesis by Smads

Besides acting as transcriptional regulators, R-Smad proteins promote the processing of a subset of miRNAs and rapidly enhance their expression on ligand stimulation (Figs. 2,3C) (Davis et al. 2008, 2010; Blahna and Hata 2012). In the first processing step, the RNase III enzyme Drosha in complex with cofactors DGCR8 (De-George critical region 8, also known as Pasha), DEAD-box RNA helicases p68 (DDX5), and p72 (DDX17) cleave the pri-miRNAs to generate precursor miRNAs (pre-miRNAs) in the nucleus (Figs. 2,3C) (Blahna and Hata 2012). Both TGF-β- and BMP-regulated R-Smad proteins interact with p68 in the nucleus and facilitate the processing of pri-miRNAs by Drosha (Davis et al. 2008). The carboxyl-terminus phosphorylation by the receptor kinase is required for nuclear translocation of R-Smads but dispensable for the regulation of Drosha activity (Davis et al. 2008). Furthermore, unlike the transcriptional control by R-Smads that require co-Smad, R-Smads are capable of modulating the processing activity of Drosha in the absence of co-Smad (Davis et al. 2008), possibly explaining instances of Smad4-independent gene regulation (Bardeesy et al. 2006). In addition to their interaction with p68, Smads also directly associate with a 5-nucleotide double-stranded RNA (dsRNA) sequence motif that closely resembles the SBE and is enclosed within the mature miRNA sequence. This RNA motif specifies the pri-miRNAs that are regulated by R-Smads (Davis et al. 2010). miRNA-mediated gene regulation by Smad proteins can play a central role under stresses, such as hypoxia, during which transcription is compromised.

Table 3. List of miRNAs whose expression is regulated by the TGF-β family of ligands

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Ligand</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>let-7b, let-7c, miR-19b, miR-221, miR-222</td>
<td>Activin A</td>
<td>Tsai et al. 2010</td>
</tr>
<tr>
<td>miR-17 ~ 92 cluster</td>
<td>TGF-β</td>
<td>Luo et al. 2014</td>
</tr>
<tr>
<td>miR-21</td>
<td>TGF-β</td>
<td>Zhong et al. 2011</td>
</tr>
<tr>
<td></td>
<td>BMP-4</td>
<td>Ahmed et al. 2011</td>
</tr>
<tr>
<td></td>
<td>BMP-6</td>
<td>Du et al. 2009</td>
</tr>
<tr>
<td>miR-22</td>
<td>BMP-2</td>
<td>Berenguer et al. 2013</td>
</tr>
<tr>
<td>miR-23a cluster</td>
<td>TGF-β</td>
<td>Huang et al. 2008</td>
</tr>
<tr>
<td>miR-24-1, miR-31</td>
<td>BMP-2</td>
<td>Sun et al. 2009; Dunworth et al. 2014</td>
</tr>
<tr>
<td>miR-30b/c</td>
<td>BMP-2</td>
<td>Balderman et al. 2012</td>
</tr>
<tr>
<td>miR-96</td>
<td>BMP-4</td>
<td>Kim et al. 2014</td>
</tr>
<tr>
<td>miR-140-5p, miR-455-3p</td>
<td>TGF-β</td>
<td>Swingler et al. 2012</td>
</tr>
<tr>
<td>miR-141, miR-200a</td>
<td>BMP-2</td>
<td>Itoh et al. 2009</td>
</tr>
<tr>
<td>miR-143/145</td>
<td>TGF-β and BMP-4</td>
<td>Davis-Dusenberg et al. 2011</td>
</tr>
<tr>
<td>miR-181a</td>
<td>Activin A</td>
<td>Blumensatt et al. 2013</td>
</tr>
<tr>
<td>miR-181b</td>
<td>BMP-2</td>
<td>Dunworth et al. 2014</td>
</tr>
<tr>
<td>miR-181c/d, miR-341 ~ 3072 cluster</td>
<td>Activin, TGF-β</td>
<td>Wang et al. 2010a; Neel and Lebrun 2013</td>
</tr>
<tr>
<td>miR-192</td>
<td>BMP-6</td>
<td>Hu et al. 2013</td>
</tr>
<tr>
<td></td>
<td>TGF-β</td>
<td>Sun et al. 2011</td>
</tr>
<tr>
<td>miR-200 family</td>
<td>TGF-β</td>
<td>Gregory et al. 2008</td>
</tr>
<tr>
<td></td>
<td>BMP-7</td>
<td>Samavarchi-Tehrani et al. 2010</td>
</tr>
<tr>
<td>miR-206</td>
<td>BMP-2</td>
<td>Sato et al. 2009</td>
</tr>
<tr>
<td></td>
<td>Nodal</td>
<td>Liu et al. 2013</td>
</tr>
<tr>
<td>miR-302/367</td>
<td>BMP-4</td>
<td>Lipchina et al. 2011</td>
</tr>
</tbody>
</table>

This list contains both direct and indirect transcriptional targets of Smad complexes.
Table 4. List of miRNAs and their targets in the TGF-β family of signaling pathways

<table>
<thead>
<tr>
<th>miRNA</th>
<th>miRNA targets</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>let-7</td>
<td>ACVR1B/ALK4</td>
<td>Colas et al. 2012</td>
</tr>
<tr>
<td>miR-14, miR-200c, miR-203</td>
<td>Noggin, Bmp (Crossveinless-2)</td>
<td>Cao et al. 2013</td>
</tr>
<tr>
<td>miR-15, miR-16</td>
<td>ACVR2A</td>
<td>Martello et al. 2007</td>
</tr>
<tr>
<td>miR-17 ~ 92 cluster</td>
<td>TBRII, Smad2, Smad4</td>
<td>Li et al. 2012</td>
</tr>
<tr>
<td>miR-18</td>
<td>Smad2</td>
<td>Colas et al. 2012</td>
</tr>
<tr>
<td>miR-20a</td>
<td>BMP2</td>
<td>Tiago et al. 2014</td>
</tr>
<tr>
<td>miR-21</td>
<td>Smad3</td>
<td>Kim et al. 2009</td>
</tr>
<tr>
<td>miR-22</td>
<td>BMP6, BMP7</td>
<td>Long et al. 2013</td>
</tr>
<tr>
<td>miR-23a</td>
<td>Smad2, Smad3, Smad4</td>
<td>Huang et al. 2008</td>
</tr>
<tr>
<td>miR-23b cluster</td>
<td>Smad3, Smad4, Smad5</td>
<td>Rogler et al. 2009</td>
</tr>
<tr>
<td>miR-24</td>
<td>ACVR1B/ALK4</td>
<td>Wang et al. 2008</td>
</tr>
<tr>
<td>miR-26a</td>
<td>Smad4</td>
<td>Liang et al. 2014</td>
</tr>
<tr>
<td>miR-27a</td>
<td>Smad2</td>
<td>Bao et al. 2014</td>
</tr>
<tr>
<td>miR-30</td>
<td>Smad1</td>
<td>Wu et al. 2012</td>
</tr>
<tr>
<td>miR-34a</td>
<td>INHBB (Activin B)</td>
<td>Tu et al. 2014</td>
</tr>
<tr>
<td>miR-92</td>
<td>Noggin3</td>
<td>Ning et al. 2013</td>
</tr>
<tr>
<td>miR-98</td>
<td>ACVR1B/ALK4</td>
<td>Siragam et al. 2012</td>
</tr>
<tr>
<td>miR-106b</td>
<td>TGFβR2</td>
<td>Wang et al. 2010b</td>
</tr>
<tr>
<td>miR-130a</td>
<td>ACVR1/ALK2</td>
<td>Zumbrunnen-Bullough et al. 2014</td>
</tr>
<tr>
<td>miR-134</td>
<td>CHRD1L</td>
<td>Gaughwin et al. 2011</td>
</tr>
<tr>
<td>miR-135</td>
<td>Smad5</td>
<td>Li et al. 2008</td>
</tr>
<tr>
<td>miR-140-5p</td>
<td>BMP2</td>
<td>Hwang et al. 2014</td>
</tr>
<tr>
<td>miR-145</td>
<td>Smad2, Smad3</td>
<td>Kim et al. 2011</td>
</tr>
<tr>
<td>miR-146a</td>
<td>ACVR1B/ALK4</td>
<td>Yan et al. 2012</td>
</tr>
<tr>
<td>miR-148a</td>
<td>Smad2, Smad3</td>
<td>Cheung et al. 2014</td>
</tr>
<tr>
<td>miR-155</td>
<td>Smad4</td>
<td>Lv et al. 2014</td>
</tr>
<tr>
<td>miR-181a</td>
<td>ACVR2A</td>
<td>Zhang et al. 2013b</td>
</tr>
<tr>
<td>miR-195</td>
<td>ACVR2A</td>
<td>Bai et al. 2012</td>
</tr>
<tr>
<td>miR-199a-5p</td>
<td>ACVR1B/ALK4</td>
<td>Lin et al. 2014</td>
</tr>
<tr>
<td>miR-199-3p</td>
<td>Smad1</td>
<td>Lin et al. 2009</td>
</tr>
<tr>
<td>miR-204-5p</td>
<td>Smad4</td>
<td>Wang et al. 2013</td>
</tr>
<tr>
<td>miR-210</td>
<td>ACVR1B/ALK4</td>
<td>Mizuno et al. 2009</td>
</tr>
<tr>
<td>miR-224</td>
<td>Smad4</td>
<td>Yao et al. 2010</td>
</tr>
<tr>
<td>miR-302</td>
<td>TOB2, DAZAP2, and SLAIN1</td>
<td>Lipchina et al. 2011</td>
</tr>
<tr>
<td>miR-370</td>
<td>TBRII</td>
<td>Lo et al. 2012</td>
</tr>
<tr>
<td>miR-376c</td>
<td>TBRI, ACVR1C/ALK7</td>
<td>Fu et al. 2013</td>
</tr>
<tr>
<td>miR-378</td>
<td>TGF-β1</td>
<td>Nagalingam et al. 2014</td>
</tr>
<tr>
<td>miR-455-3p</td>
<td>ACVR2B, Smad2</td>
<td>Swingler et al. 2012</td>
</tr>
<tr>
<td>miR-656</td>
<td>BMPR1A/ALK3</td>
<td>Guo et al. 2014</td>
</tr>
</tbody>
</table>
larly to Smads but in response to different stimuli, other transcription factors, such as p53 (Fukuda et al. 2007; Suzuki et al. 2009) and YAP (Mori et al. 2014), associate with the Drosha microprocessor complex and modulate processing of a set of pri-miRNAs. Thus, R-Smads are not unique in terms of modulating gene expression through two mechanisms: regulation of transcription via DNA binding and miRNA biogenesis via RNA binding.

CONTROL OF TGF-β SIGNALING PATHWAY MEDIATORS BY miRNAs

It has been estimated that the translation of more than 30% of the coding genes is regulated by miRNAs. Molecules of the TGF-β signaling pathway are no exceptions. Protein expression of ligands, receptors, and Smads is under the control of miRNAs: one more regulatory layer for TGF-β signaling (Blahna and Hata 2012). Deregulation of miRNA expression, therefore, can lead to aberrant activity of TGF-β signaling and contribute to the pathogenesis of various disorders, including tumorigenesis (Blahna and Hata 2012). miRNAs often act in a tissue-specific manner, because of either tissue-specific expression of miRNA and targets, or tissue-specific variation of the length of the 3′-UTR of target mRNAs (Blahna and Hata 2012). These constraints contribute to limited expression of many genes, including those controlled by TGF-β. Furthermore, miRNAs whose expression is regulated by TGF-β family pathways (in Table 3) often target mRNAs encoding mediators of the TGF-β signaling pathway (in Table 4), indicating a regulatory feedback loop between miRNAs and targets.

CONCLUDING REMARKS

About two decades have elapsed since the discovery of the receptors and signal transducers of the TGF-β family ligands. Despite a detailed understanding of the signaling principles and the effectors of its regulation, the TGF-β pathway remains rather mysterious as it is still unclear how ligands can transmit context- and concentration-dependent signals through a deceptively simple signaling pathway. The mere number of different regulatory proteins that modulate the TGF-β signaling pathway at different steps underscores the complex mode by which a specific biological outcome is generated. A major challenge at the current stage is to elucidate the logic that integrates these various regulatory inputs to explain the multifunctional nature of the TGF-β pathway during embryogenesis and in the maintenance of homeostasis. Understanding the precise nature of context-dependent signal transduction has tremendous medical relevance to numerous pathological conditions and developmental defects linked to deregulation of the TGF-β signaling pathways.

ACKNOWLEDGMENTS

We give special thanks to Dr. G. Lagna for critical reading and editing of the text, and all past and present members of our laboratories for numerous contributions. We apologize to all colleagues whose work could not be cited because of space restrictions. Work in the authors’ laboratories is funded by grants from the National Natural Science Foundation of China (NSFC) (31330049, 91519310) and the 973 Program (2013CB933700) (to Y.-G.C.); and the National Heart, Lung, and Blood Institute (NHLBI), American Heart Association, and Fondation LeDucq (to A.H.). The authors declare no financial interest.

REFERENCES

A. Hata and Y.-G. Chen

Bennett D, Alphey L. 2002. PP1 binds Sara and negatively

Bengtsson L, Schwappacher R, Roth M, Boergermann JH,

Blahna MT, Hata A. 2012. Smad-mediated regulation of

22

A. Hata and Y.-G. Chen Genet

Blahna MT, Hata A. 2013. Regulation of miRNA biogenesis

Batut J, Howell M, Hill CS. 2007. Kinesin-mediated trans-

Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson

Bao Y, Chen Z, Guo Y, Feng Y, Li Z, Han W, Wang J, Zhao W,

Bakebo M, Huse K, Hilden VI, Forfang L, Myklebust JH,

Balderman JA, Lee HY, Mahoney CE, Handy DE, White K,

Annis S, Lebeche D, Hajjar RJ, Loscalzo J, Leopold JA.

Bruce DL, Macartney T, Yong W, Shou W, Sapkota GR 2012.

Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-β pathway. Cell Signal 24:

Burk U, Schubert J, Wellner U, Schmalhofer O, Vincen C,

Spaderna S, Brabletz T. 2008. A reciprocal repression be-

between ZEB1 and members of the miR-200 family prom-

otes EMT and invasion in cancer cells. EMBO Rep 9:

582–589.

McManus MT, Klein OD, Amendt BA. 2013. The Pitr2:

miR-200c/141:noggin pathway regulates Bmp signaling

and ameloblast differentiation. Development 140: 3348–

3359.

Chen RH, Miettinen PJ, Maruoka EM, Choy L, Derynck R.

Chen HB, Rud JG, Lin K, Xu L. 2005. Nuclear targeting of transforming growth factor-β-activated Smad complex-

Chen HB, Shen J, Ip YT, Xu L. 2006. Identification of phos-

phatases for Smad in the BMP/DPP pathway. Genes Dev 20:

648–653.

Chen YG, Wang Z, Ma J, Zhang L, Lu Z. 2007. Endofin, a FYVE domain protein, interacts with Smad4 and facil-

ing and mesenchymal stem cell differentiation. Mol Cell Biol 35: 1700–1711.

Cheung KS, Sposito N, Stumpf PS, Wilson DI, Sanchez-

Elsner T, Orefio RO. 2014. MicroRNA-146a regulates hu-

man foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3. PLoS ONE 9:

e98063.

Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH.

2005. Tsc-2 enhances TGF-β signaling by associating

31455–31462.

Colas AR, McKeathan WL, Cunningham TJ, Bushway PJ,

A. Hata and Y.-G. Chen

Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. *Mol Cell Biol* **20**: 9346–9355.

Cite this article as <article citation>.
A. Hata and Y.-G. Chen

Shapira KE, Hirschhorn T, Barzilay L, Smorodinsky NJ, He-\n\n

Sriram G, Raman P, Sathiyanarayanan B, Selvaraj B, Suresh M, Sridevi K, et al. 2012. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carci\n

A. Hata and Y.-G. Chen

Downloaded from http://cshperspectives.cshlp.org/ on November 6, 2017 - Published by Cold Spring Harbor Laboratory Press

Cold Spring Harbor Perspectives in Biology

www.cshperspectives.org

30

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a022061

TGF-β Signaling from Receptors to Smads

Akiko Hata and Ye-Guang Chen

Cold Spring Harb Perspect Biol 2016; doi: 10.1101/cshperspect.a022061 originally published online July 22, 2016

<table>
<thead>
<tr>
<th>Subject Collection</th>
<th>The Biology of the TGF-β Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β Family Signaling in Connective Tissue and Skeletal Diseases</td>
<td>Featuring Elena Gallo MacFarlane, Julia Haupt, Harry C. Dietz, et al.</td>
</tr>
<tr>
<td>The TGF-β Family in the Reproductive Tract</td>
<td>Diana Monsivais, Martin M. Matzuk and Stephanie A. Pangas</td>
</tr>
<tr>
<td>Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways</td>
<td>Kunxin Luo</td>
</tr>
<tr>
<td>TGF-β Family Signaling in Early Vertebrate Development</td>
<td>Joseph Zinski, Benjamin Tajer and Mary C. Mullins</td>
</tr>
<tr>
<td>The TGF-β Family in Caenorhabditis elegans</td>
<td>Cathy Savage-Dunn and Richard W. Padgett</td>
</tr>
<tr>
<td>TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment</td>
<td>Featuring Michael W. Pickup, Philip Owens and Harold L. Moses</td>
</tr>
<tr>
<td>Bone Morphogenetic Protein–Based Therapeutic Approaches</td>
<td>Featuring Jonathan W. Lowery and Vicki Rosen</td>
</tr>
<tr>
<td>Targeting TGF-β Signaling for Therapeutic Gain</td>
<td>Featuring Rosemary J. Akhurst</td>
</tr>
<tr>
<td>Regulation of Hematopoiesis and Hematological Disease by TGF-β Family Signaling Molecules</td>
<td>Featuring Kazuhito Naka and Atsushi Hirao</td>
</tr>
<tr>
<td>TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function</td>
<td>Featuring Emily A. Meyers and John A. Kessler</td>
</tr>
<tr>
<td>TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation</td>
<td>Featuring Alan C. Mullen and Jeffrey L. Wrana</td>
</tr>
<tr>
<td>Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection</td>
<td>Featuring Shomyseh Sanjabi, Soyoung A. Oh and Ming O. Li</td>
</tr>
<tr>
<td>TGF-β Family Signaling in Mesenchymal Differentiation</td>
<td>Featuring Ingo Grafe, Stefanie Alexander, Jonathan R. Peterson, et al.</td>
</tr>
<tr>
<td>TGF-β1 Signaling and Tissue Fibrosis</td>
<td>Featuring Kevin K. Kim, Dean Sheppard and Harold A. Chapman</td>
</tr>
<tr>
<td>TGF-β Family Signaling in the Control of Cell Proliferation and Survival</td>
<td>Featuring Yun Zhang, Peter B. Alexander and Xiao-Fan Wang</td>
</tr>
</tbody>
</table>

For additional articles in this collection, see http://cshperspectives.cshlp.org/cgi/collection/

Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved