Histone H3 Mutations in Pediatric Brain Tumors

Xiaoyang Liu1, Troy A. McEachron2, Jeremy Schwartzentruber1, and Gang Wu3

1McGill University, Montreal, Quebec H3A 0G4, Canada; 2Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004; 3St. Jude Children’s Research Hospital, Memphis, Tennessee 38105

Correspondence: tmceachron@tgen.org

Until recently, mutations in histones had not been described in any human disease. However, genome-wide sequencing of pediatric high-grade gliomas revealed somatic heterozygous mutations in the genes encoding histones H3.1 and H3.3, as well as mutations in the chromatin modifiers ATRX and DAXX. The functional significance and mechanistic details of how these mutations affect the tumors is currently under intensive investigation. The information gained from these studies will shed new light on normal brain development as well as increase our understanding of the tumorigenic processes that drive pediatric high-grade gliomas.

Histone proteins are among the most highly conserved proteins in eukaryotes, with the majority of the protein sequence being identical in organisms ranging from yeast to humans. Histones are involved in the basic packaging of DNA, allowing two meters of DNA to fit inside the nucleus of a single cell! There are four core histones: H2A, H2B, H3, and H4. DNA in the nucleus is wrapped around a histone octamer comprised of two of each of the core histones, forming a nucleosome. A string of nucleosomes is then further compacted to form chromatin. The amino-terminal tails of each of the core histones protrude from the nucleosome and receive a variety of posttranslational modifications (PTMs). Because essentially all cells in the body have the same genome but different sets of genes are expressed, it is the combination of PTMs of the histone tails—often referred to as the histone code—that largely determines the structure of the chromatin and whether genes will or will not be transcribed in each cell. This epigenetic regulation of gene expression is a key factor in cell determination and differentiation, and thus organismal development as a whole.

Until recently, there had not been any reports of histone mutations in any human disease. In January 2012, two studies simultaneously reported the first ever histone mutations in pediatric brain tumor patients. Both groups reported recurrent somatic heterozygous mutations in the gene encoding the histone variant H3.3 (i.e., H3F3A), in patients diagnosed with non-brainstem pediatric glioblastomas (non-BS-PGs) and diffuse intrinsic pontine gliomas (DIPGs; Schwartzentruber et al. 2012; Wu et al. 2012). One of the groups also reported heterozygous mutations in the gene encoding histone H3.1 (i.e., HIST1H3B) in a significant percentage of DIPGs (Wu et al. 2012). Strikingly, these mutually exclusive H3 mutations resulted in amino acid substitutions at two specific positions in the proteins: lysine-to-methionine substitutions at position 27 (K27M) in both H3.1 and H3.3 and either a glycine-to-arginine or glycine-to-valine substitution at position 34 (G34R, G34V) in H3.3. In fact, 78% of DIPG samples and 36% of non-BS-PG contained these histone mutations (Fig. 1B,C).

The histone H3.1 and H3.3 variants are structurally similar proteins that differ at only five amino acid positions. H3.1 is termed a replication-dependent histone because it is expressed and incorporated into nucleosomes during S phase of the cell cycle. Conversely, H3.3 is repli-
Figure 1. Potential effects of histone H3 and ATRX/DAXX mutations in the tumorigenic process of pediatric high-grade gliomas. (A) In the absence of mutations, the amino-terminal tail of histone H3 receives a myriad of cell-type- and developmental-stage-specific posttranslational modifications (PTMs) dictating the gene expression profiles required for normal brain development. (B) The H3K27M mutation results in a hypomethylated K27 residue (loss of red hexagon), preventing Polycomb-mediated repression of target genes. This likely results in oncogene expression and an altered gene expression profile suitable for the development of high-grade gliomas of the midline structures, most notably diffuse intrinsic pontine gliomas (blue/yellow star). (C) The H3G34R/V mutation diminishes the levels of H3K36 methylation (loss of yellow hexagon), which may impact transcriptional elongation in addition to generating a gene expression profile conducive to the formation of non-brainstem pediatric glioblastomas (blue/yellow star). The H3G34R/V may also impact on the acetylation of H3K36 (not shown for illustrative purposes). (D) Mutations in ATRX/DAXX alter the proper deposition of histone H3.3 at pericentric and telomeric heterochromatic loci, thus compromising chromatin structure and allowing for genomic instability and alternative lengthening of telomeres (ALT). H3K27me, red hexagon; H3K36me, yellow hexagon; high-grade glioma, blue/yellow star; telomeres, blue chromatin shading; pericentric heterochromatin, red chromatin shading.
Regulators to be mutated in different cancers. Mutations in crine tumors and are among the many reported epigenetic glioblastomas, neuroblastomas, and pancreatic neuroendocrine tumors. Inactivating mutations in these genes have indeed been previously found in pediatric and adult brain. These changes in gene expression may contribute to an increased transformation potential, one of the hallmarks of cancer cells.

As there was a staggering frequency of histone H3 mutations, why were these mutations not found in earlier DNA sequencing studies? This is due in part to the new sequencing techniques now available. Rather than selecting and sequencing genes thought to be important, these two groups used different unbiased genome-wide sequencing methods to cover all protein-coding genes in samples from diseased and normal tissue. Furthermore, the clinical samples used in these two studies were from pediatric patients, not adults. These histone mutations are almost exclusively found in pediatric patients. This is of major significance as the human brain continues to develop postnatally. This then prompts the question: What is unique about the development of the normal brain that enables these mutations to be tumorigenic in children and not adults? Surprisingly, the majority of tumors with H3K27M mutations were found in the thalamus or brainstem, structures in the midline of the brain. In contrast, H3G34R/V tumors arose in the cortex. The development of the normal brain is a very dynamic and complex process, involving numerous extracellular factors that are present at precise times in specific brain locations. It is possible that the different microenvironmental factors in these particular regions of the developing brain work in concert with the altered transcriptional profiles induced by the H3K27M and H3G34R/V mutations. Together, this may contribute to an increased transformation potential, resulting in the formation of these specific types of pediatric high-grade gliomas.

Often, the study of disease conditions leads to a deeper understanding of normal biological function. It is clear that more in-depth studies are needed to discern the functional roles of these mutations pertaining to tumor biology and normal brain development. The information and insight that will be gained from such studies will potentially provide clinically relevant diagnostic, prognostic, and/or therapeutic benefits for pediatric patients with this disease, as well as increasing our overall knowledge of epigenetics.
REFERENCES

*Reference is also in this collection.


Histone H3 Mutations in Pediatric Brain Tumors

Xiaoyang Liu, Troy A. McEachron, Jeremy Schwartzentruber and Gang Wu

Cold Spring Harb Perspect Biol 2014; doi: 10.1101/cshperspect.a018689

Subject Collection  Epigenetics

Metabolic Signaling to Chromatin
Shelley L. Berger and Paolo Sassone-Corsi

Histone and DNA Modifications as Regulators of Neuronal Development and Function
Stavros Lomvardas and Tom Maniatis

Histone Modifications and Cancer
James E. Audia and Robert M. Campbell

Epigenetics and Human Disease
Huda Y. Zoghbi and Arthur L. Beaudet

Induced Pluripotency and Epigenetic Reprogramming
Konrad Hochedlinger and Rudolf Jaenisch

Long-Range Chromatin Interactions
Job Dekker and Tom Misteli

RNAi and Heterochromatin Assembly
Robert Martienssen and Danesh Moazed

Dosage Compensation in Drosophila
John C. Lucchesi and Mitzi I. Kuroda

Epigenetic Determinants of Cancer
Stephen B. Baylin and Peter A. Jones

Maintenance of Epigenetic Information
Geneviève Almouzni and Howard Cedar

A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks
Dinshaw J. Patel

The Necessity of Chromatin: A View in Perspective
Vincenzo Pirrotta

Germline and Pluripotent Stem Cells
Wolf Reik and M. Azim Surani

Comprehensive Catalog of Currently Documented Histone Modifications
Yingming Zhao and Benjamin A. Garcia

Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe
Robin C. Alishire and Karl Ekwall

Histone Variants and Epigenetics
Steven Henikoff and M. Mitchell Smith

For additional articles in this collection, see http://cshperspectives.cshlp.org/cgi/collection/

Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved