The Hippo Pathway

Kieran F. Harvey¹ and Iswar K. Hariharan²

¹Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
²University of California, Berkeley, Berkeley, California 94720
Correspondence: ikh@berkeley.edu

The Hippo pathway (Fig. 1), also known as the Salvador-Warts-Hippo pathway, regulates tissue growth in a wide variety of organisms (Harvey and Tapon 2007; Grusche et al. 2010; Oh and Irvine 2010; Pan 2010; Halder and Johnson 2011; Zhao et al. 2011). Many components of the pathway were identified as a result of mutations in the fruit fly Drosophila melanogaster that resulted in tissue overgrowth (Table 1). The pathway is conserved in

![Figure 1. The Drosophila Hippo pathway.](image-url)
Drosophila Human

Upstream
- Fat (FT)
- Dachsous (DS)
- Discs overgrown (DCO)
- Lowfat (LFT)
- Four-jointed (FJ)
- Dachs (D)
- Approximated (APP)
- Zyxin (ZYY)
- Merlin (MER)
- Expanded (EX)
- Kibra
- Crumbs (CRB)
- Lethal giant larvae (LGL)
- Discs large (DLG)
- Scribble (SCRIB)
- aPKC
- STRIPAK (PP2A)
- RASSF
- Myopic (MOP)
- JUB
- TAO1

Core
- Hippo (HPO)
- Salvador (SAV)
- Mats (MTS)
- Warts (WTS)

Downstream
- Yorkie (YKI)
- WBP2
- Scalloped (SD)
- MAD
- TSH
- HTH

The main output of the module involves the transcriptional coactivator Yorkie (YKI) (Huang et al. 2005). Phosphorylation of YKI by WTS induces binding of 14-3-3 proteins to YKI that limit YKI activity by preventing nuclear accumulation. Phosphatases that counter the activity of WTS have not been discovered but the Myopic (MOP) tyrosine phosphatase regulates YKI activity, repressing it (Gilbert et al. 2011). YKI promotes tissue growth by increasing expression of positive regulators of cell growth and inhibitors of apoptosis. YKI, itself does not bind DNA but functions together with several transcription factors, including Scalloped (SD; the homolog of TEAD transcription factors in vertebrates), Homothorax (HTH), Teashirt (TSH), and Mothers against DPP (MAD). Transcriptional regulatory proteins such as WBP2 also control Hippo-pathway-dependent tissue growth (Zhang et al. 2011). WBP2 and other as-yet-unidentified proteins have been predicted to interact with YKI via its WW domains, which are important for YKI’s transcription activation function (Oh and Irvine 2010).

The HPO and WTS kinases appear to receive multiple inputs. The first upstream regulators to be discovered were the Band 4.1 proteins Expanded (EX) and MER (Hamarterouglu et al. 2006). These function together with the WW-domain-containing protein Kibra to activate the core kinase cassette by an unknown mechanism. EX is also thought to repress YKI by physical interaction and sequestration. The Fat/Dachsous branch of the pathway consists of the atypical cadrinths Fat (FT) and Dachsous (DS) as well as the downstream effector proteins Discs overgrown (DCO, a serine-threonine kinase also known as casein kinase 1e), Dachs (D, an atypical myosin), Approximated (APP, a palmitoyltransferase), Lowfat (LFT), and Zyxin (ZYY) (Grusche et al. 2010; Rauskolb et al. 2011). The Fat/Dachsous branch impinges on pathway activity by modulating the abundance of WTS and also modulates vertebrats, including mammals (Fig. 2), and changing the activity of the pathway can result in dramatic changes in the size of certain organs, most notably the liver (Pan 2010; Halder and Johnson 2011). In addition to its role in regulating tissue growth, the pathway has been implicated in the control of other biological processes, such as cell-fate determination, mitosis, and pluripotency. Deregluation of Hippo pathway activity has been reported in many human cancers. The human homolog of *D. melanogaster* Merlin (MER), also known as Neurofibromatosis Type 2 (NF2) is a bona fide tumor suppressor, while altered activity of several Hippo pathway components has been implicated in human tumorigenesis (Harvey and Tapon 2007).

At the core of the pathway is a module composed of two kinases—Hippo (HPO) (Harvey et al. 2003; Jia et al. 2003; Pantalacci et al. 2003; Udan et al. 2003; Wu et al. 2003) and Warts (WTS; also known as LATS) (Justice et al. 1995; Xu et al. 1995)—and two other proteins—Salvador (SAV) (Kango-Singh et al. 2002; Tapon et al. 2002) and Mob as Tumor Suppressor (MTS) (Lai et al. 2005). HPO functions upstream of WTS and can directly phosphorylate it. Mutations that inactivate any of these four proteins result in tissue overgrowth. The first indication that some of these proteins might function in a pathway was the observation that sav and wts mutants display similar phenotypic abnormalities and that the two proteins can interact with each other (Tapon et al. 2002). More recently it has been shown that activity of this module can be regulated by RASSF, a scaffold protein that promotes tissue growth by recruiting the serine-threonine phosphatase complex STRIPAK to inhibit HPO autophosphorylation, and hence HPO activity (Ribeiro et al. 2010).
the Kibra-EX-MER branch by regulating EX levels. The sterile 20-like kinase, TAO1, phosphorylates and activates HPO (MST1/2 in mammals) although it is unclear whether TAO1 activity is regulated (Boggiano et al. 2011; Poon et al. 2011).

Increasing evidence underlines the importance of cell junctions for regulation of Hippo pathway activity. In D. melanogaster epithelial cells, many Hippo pathway proteins reside, at least partially, at the sub-apical region (SAR), adherens junction (AJ) or septate junction (SJ). Examples of such junctional proteins include the AJ protein Jub and the apical-basal polarity proteins Discs large (DLG), Lethal giant larvae (LGL), Scribble (SCRB), Crumbs (CRB), and atypical protein kinase C (aPKC). In mammalian epithelial cells, several other junctional proteins regulate Hippo pathway activity (see Table 2), including angiomotin and

Table 2. Components of the human Salvador-Warts-Hippo pathway and their Drosophila melanogaster homologs

<table>
<thead>
<tr>
<th>Human</th>
<th>Drosophila</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td></td>
</tr>
<tr>
<td>α-Catenin</td>
<td>α-Catenin</td>
</tr>
<tr>
<td>PATJ</td>
<td>Discs lost</td>
</tr>
<tr>
<td>PALS1</td>
<td>Stardust</td>
</tr>
<tr>
<td>AMOTs</td>
<td>?</td>
</tr>
<tr>
<td>β-TRCP</td>
<td>Slimb</td>
</tr>
</tbody>
</table>
α-catenin (Schlegelmilch et al. 2011; Zhao et al. 2011). The Hippo pathway may therefore help couple tissue growth to mechanical stresses or cell–cell contact, which might be important for organ size regulation.

REFERENCES

The Hippo Pathway

Kieran F. Harvey and Iswar K. Hariharan

Cold Spring Harb Perspect Biol 2012; doi: 10.1101/cshperspect.a011288 originally published online June 28, 2012

Subject Collection Signal Transduction

Cell Signaling and Stress Responses
Gökhan S. Hotamisligil and Roger J. Davis

Protein Regulation in Signal Transduction
Michael J. Lee and Michael B. Yaffe

Synaptic Signaling in Learning and Memory
Mary B. Kennedy

Vertebrate Reproduction
Sally Kornbluth and Rafael Fissore

Signaling in Lymphocyte Activation
Doreen Cantrell

Signaling in Muscle Contraction
Ivana Y. Kuo and Barbara E. Ehrlich

Toll-Like Receptor Signaling
Kian-Huat Lim and Louis M. Staudt

Signaling Pathways that Regulate Cell Division
Nicholas Rhind and Paul Russell

Second Messengers
Alexandra C. Newton, Martin D. Bootman and John D. Scott

Signals and Receptors
Carl-Henrik Heldin, Benson Lu, Ron Evans, et al.

Cell Death Signaling
Douglas R. Green and Fabien Llambi

Signaling Networks that Regulate Cell Migration
Peter Devreotes and Alan Rick Horwitz

Signaling Networks: Information Flow, Computation, and Decision Making
Evren U. Azeloglu and Ravi Iyengar

Signal Transduction: From the Atomic Age to the Post-Genomic Era
Jeremy Thorner, Tony Hunter, Lewis C. Cantley, et al.

Signaling by the TGFβ Superfamily
Jeffrey L. Wrana

Subversion of Cell Signaling by Pathogens
Neal M. Alto and Kim Orth

For additional articles in this collection, see http://cshperspectives.cshlp.org/cgi/collection/