IP₃ Receptors: Toward Understanding Their Activation

Colin W. Taylor and Stephen C. Tovey

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom

Correspondence: cwt1000@cam.ac.uk

Inositol 1,4,5-trisphosphate receptors (IP₃R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca²⁺ release from intracellular stores. Their regulation by Ca²⁺ allows them also to propagate cytosolic Ca²⁺ signals regeneratively. This brief review addresses the structural basis of IP₃R activation by IP₃ and Ca²⁺. IP₃ initiates IP₃R activation by promoting Ca²⁺ binding to a stimulatory Ca²⁺-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP₃ with opposite sides of the clam-like IP₃-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP₃R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP₃R.

A BRIEF HISTORY OF IP₃ RECEPTORS

Sidney Ringer, in his famous correction to an earlier paper, showed that Ca²⁺ entry can evoke a physiological response by demonstrating that beating of the frog heart requires extracellular Ca²⁺ (Ringer 1883). Almost a century passed before it became clear that this Ca²⁺ entry, via voltage-gated Ca²⁺ channels, was not directly responsible for contraction, but instead provided the trigger for a much larger release of Ca²⁺ from stores within the sarcoplasmic reticulum (SR). The latter is mediated by type-2 ryanodine receptors (RyR) (Fabiato 1983; Cheng et al. 1993), which like many Ca²⁺ channels, are able both to transport Ca²⁺ through an open pore and respond to it. These observations highlight two general points. First, cells call upon two sources of Ca²⁺ to evoke increases in cytosolic Ca²⁺ concentration; second, interactions between these Ca²⁺ fluxes across the plasma membrane and the membranes of intracellular stores are important determinants of the physiological response. The same points apply to the Ca²⁺ signals evoked by receptors that stimulate phospholipase C (PLC) and, thereby, formation of inositol 1,4,5-trisphosphate (IP₃).

The biochemical sequence linking these receptors to formation of IP₃ emerged in the 1980s (Michell et al. 1989; Berridge 2005), but work in the decade before had established that many receptors regulate many different responses by increasing the cytosolic Ca²⁺ concentration (Rasmussen 1970; Berridge 1975). In his
Influential review, Bob Michell (Michell 1975), building on work showing that many of these receptors also stimulate phospholipid turnover (Hokin and Hokin 1953), had suggested a causal link between phosphoinositide hydrolysis and Ca^{2+} signals. Here, as in many studies, the emphasis was on Ca^{2+} entry, with a consensus only slowly emerging that Ca^{2+} fluxes across both the plasma membrane and the membranes of intracellular stores contribute to cytosolic Ca^{2+} signals (Rasmussen 1970; Berridge 1975; Williams 1980; Putney et al. 1981). In the years following Michell’s review, decisive evidence, much of it coming from Mike Berridge’s elegant studies of blowfly salivary gland, established that phosphoinositide hydrolysis is, as predicted by Michell, required for PLC-linked receptors to evoke Ca^{2+} signals (Berridge and Fain 1979). The same preparation was used to show that IP3 is the first water-soluble product of the signaling pathway (Berridge 1983). IP3, thus, emerged as a prime candidate for the cytosolic messenger linking events at the plasma membrane to release of Ca^{2+} from intracellular stores. Paradoxically, it was to be many years before the links between receptors that stimulate phosphoinositide hydrolysis were followed by purification of IP3R from cerebellum (Maeda et al. 1988; Krinke et al. 2007). These studies established that IP3R are unusually large proteins, comprising tetramers of closely-related subunits, each with about 2700 amino acid residues. Here, we focus solely on Ca^{2+} release from the endoplasmic reticulum (ER) by IP3R. Some of the key steps in the evolution of our current understanding of IP3R are listed in Table 1.

The role of the SR as the intracellular source of Ca^{2+} signals in striated muscle was long-established (Endo et al. 1970), but there was no such agreement on the identity of the organelle from which Ca^{2+} was released in other cells. Competing claims suggested roles for mitochondria or the ER. Evidence that in resting hepatocytes only the ER contains appreciable amounts of Ca^{2+} (Burgess et al. 1983) was quickly followed by the demonstration that IP3 evoked Ca^{2+} release from a non-mitochondrial Ca^{2+} store in permeabilized pancreatic acinar cells (Streb et al. 1983). Countless groups quickly replicated these findings in many cells, and within months it was universally accepted that the ER is the major Ca^{2+} store from which IP3 stimulates Ca^{2+} release in most animal cells (Berridge and Irvine 1984; Berridge and Irvine 1989). Subsequent work has suggested that IP3 may also stimulate Ca^{2+} release from the Golgi apparatus (Pinton et al. 1998), from within the nucleus (Gerasimenko et al. 1995; Echevarria et al. 2003; Marchenko et al. 2005), and perhaps also from secretory vesicles (Gerasimenko et al. 1996), but ER remains the major IP3-sensitive Ca^{2+} store. Evidence that IP3 stimulates Ca^{2+} efflux from the ER (rather than inhibiting Ca^{2+} uptake) and the first single channel recordings (Ehrlich and W atras 1988) established that the IP3R is an IP3-gated, Ca^{2+}-permeable channel. The first studies of 32P-IP3 binding (Spät et al. 1986) were followed by purification of IP3R from cerebellum (Maeda et al. 1988; Supattapone et al. 1988) and then cloning of the first IP3R subtype (IP3R1) (Furuichi et al. 1989; Mignery et al. 1989). Subsequent studies identified two additional genes encoding vertebrate IP3R (IP3R2 and IP3R3) and a single gene in invertebrates (Taylor et al. 1999). It remains far from clear whether plants express related IP3R (Krinke et al. 2007). These studies established that IP3R are unusually large proteins, comprising tetramers of closely-related subunits, each with about 2700 amino acid residues. RyR are even larger: they, too, are tetramers, but the subunits are almost twice the size of IP3R (≏5000 residues). This progress with identifying IP3R together with single channel recordings of IP3R, initially in artificial lipid bilayers and later in native membranes (Foskett et al. 2007; Rahman et al. 2009), provided the foundations from which to explore the structural determinants of IP3R behavior. The advances toward understanding the molecular mechanisms of IP3R are listed in Table 1.
Table 1. Landmarks en route to a structural analysis of IP₃ receptor behavior.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1883</td>
<td>Ca²⁺ entry required for heart contraction.</td>
</tr>
<tr>
<td>1953</td>
<td>Acetylcholine stimulates turnover of phospholipids.</td>
</tr>
<tr>
<td>1975</td>
<td>Phosphoinositide hydrolysis proposed to cause Ca²⁺ signals.</td>
</tr>
<tr>
<td>1977</td>
<td>Ca²⁺ waves occur at fertilization.</td>
</tr>
<tr>
<td>1977</td>
<td>Ca²⁺-induced Ca²⁺ release in SR.</td>
</tr>
<tr>
<td>1979</td>
<td>Phosphoinositide hydrolysis required for receptor-stimulated Ca²⁺ signals.</td>
</tr>
<tr>
<td>1980</td>
<td>Introduction of Quin 2 and facile loading methods.</td>
</tr>
<tr>
<td>1983</td>
<td>IP₃ is first water-soluble product of PLC.</td>
</tr>
<tr>
<td>1983</td>
<td>IP₃ stimulates Ca²⁺ release from a non-mitochondrial store.</td>
</tr>
<tr>
<td>1984</td>
<td>Ryanodine, selective RyR ligand.</td>
</tr>
<tr>
<td>1986</td>
<td>Single channel records of RyR.</td>
</tr>
<tr>
<td>1987</td>
<td>RyR1 purified.</td>
</tr>
<tr>
<td>1990</td>
<td>Elementary Ca²⁺-release events.</td>
</tr>
<tr>
<td>2002</td>
<td>Atomic structure of N-terminal of RyR.</td>
</tr>
<tr>
<td>2005</td>
<td>Atomic structure of SD.</td>
</tr>
</tbody>
</table>

1Ringer (1883).
2Hokin & Hokin (1953).
3Michell (1975).
4Ridgeway et al. (1977).
5Endo (1977).
7Tsien (1980).
8Tsien (1981).
9Berridge (1983).
10Streb et al. (1983).
11Sutko et al. (1985).
12Smith et al. (1985).
13Woods et al. (1986).
16Imagawa et al. (1987).
17Supattapone et al. (1988).
19Takeshima et al. (1989).
20Mignery et al. (1989).
21Furuichi et al. (1990).
22Parker & Ivorra (1990).
23Cheng et al. (1993).
24Bosanac et al. (2002).
25Bosanac et al. (2005).
26Amador et al. (2009).
of IP₃R behavior were accompanied by similar progress with RyR (Table 1). Recurrent themes, to which we return, are the similarities between RyR and IP₃R, and the many instances where observations of one channel family have informed further analysis of the other. Very recently, a third family of intracellular Ca²⁺ channels, unrelated to RyR and IP₃R, has been implicated in Ca²⁺ signaling. These are the two-pore channels (TPC) that are activated by NAADP and release Ca²⁺ from acidic Ca²⁺ stores, including lysosomes and endosomes (Patel et al. 2010; Zhu et al. 2010). Several trp (transient receptor protein) channels, in addition to their roles in the plasma membrane, may also mediate release of Ca²⁺ from intracellular stores (Gees et al. 2010).

Parallel to work addressing the workings of IP₃R, there was growing interest in the spatio-temporal complexity of cytosolic Ca²⁺ signals. Ca²⁺ waves were first observed during fertilization. These waves were proposed to result from Ca²⁺-induced Ca²⁺ release (CICR) and were followed by smaller repetitive Ca²⁺ transients (Ridgway et al. 1977; Gilkey 1983). It was, however, the work of Peter Cobbold that focused most attention on the complexity of intracellular Ca²⁺ signals (Woods et al. 1986). Just as the activity of a nerve is conveyed by the frequency of its action potentials, Cobbold demonstrated that in hepatocytes the concentration of the extracellular stimulus determined the frequency of the cytosolic Ca²⁺ transients. As these ideas gathered momentum (Berridge 1995), evidence accumulated in support of cells using the information provided by frequency-encoded Ca²⁺ spikes as an efficient means of regulating cellular activity (Dolmetsch et al. 1997; Li et al. 1998; Berridge et al. 2000; Dupont et al. 2003). The single greatest contributor to progress in understanding the genesis of these intracellular Ca²⁺ signals was the introduction, by Roger Tsien in 1980, of simple, minimally disruptive methods for measuring the free cytosolic Ca²⁺ concentration in intact cells (Tsien 1980; Tsien 1981). These methods, in combination with improved optical microscopy, allowed Ian Parker to begin to resolve the subcellular organization of IP₃-evoked Ca²⁺ signals (Parker and Ivorra 1990; Parker et al. 1996). He showed that as the IP₃ concentration increases, it triggers a hierarchy of elementary Ca²⁺ release events, beginning with the openings of single IP₃R (Ca²⁺ blips), progressing to the coordinated openings of a cluster of several IP₃R (Ca²⁺ puffs) and finally, with sufficient IP₃, culminating in a regenerative Ca²⁺ wave invading the entire cell (Bootman et al. 1997; Demuro and Parker 2007). The demonstration, in 1987 by Masamitsu Iino, that IP₃R are stimulated by cytosolic Ca²⁺ (Iino 1987), and the later widespread recognition that all IP₃R are biphysically regulated by cytosolic Ca²⁺ (Iino 1990; Taylor and Laude 2002), provided what has become the most widely accepted explanation for the recruitment of elementary Ca²⁺-release events. Namely, that CICR, already an established feature of RyR (Endo et al. 1970), allows an active IP₃R to propagate its activity to neighboring IP₃R.

These observations and accumulating evidence that local Ca²⁺ signals can selectively regulate local events (Rizzuto et al. 1993; Berridge et al. 2000; Dyer et al. 2005; Willoughby and Cooper 2007) prompted a re-assessment of the ways in which Ca²⁺ signals convey information. It became untenable to think of responses to graded changes in the intensity of the extracellular stimulus as being simply encoded in graded changes in global cytosolic Ca²⁺ concentration. Ca²⁺ entering the cytosol via one channel can regulate different proteins to Ca²⁺ entering via another (Berridge et al. 2000; Dyer et al. 2005; Willoughby and Cooper 2007). Hence, the spatial organization of the changes in cytosolic Ca²⁺ concentration profoundly affects the physiological response, and that presents many opportunities for delivering different Ca²⁺ signals in response to different stimuli or different stimulus intensities. The duration of each Ca²⁺ increase, whether local or global, is also important in determining not only the amplitude of the response, but also its nature, because Ca²⁺-binding proteins differ in their responses to transient and sustained signals. Finally, the frequency with which Ca²⁺ signals are delivered can determine both the nature and amplitude of the cellular response. The key point is that the versatility of Ca²⁺ as an intracellular messenger of signals was the introduction, by Roger Tsien in 1980, of simple, minimally disruptive methods for measuring the free cytosolic Ca²⁺ concentration in intact cells (Tsien 1980; Tsien 1981). These methods, in combination with improved optical microscopy, allowed Ian Parker to begin to resolve the subcellular organization of IP₃-evoked Ca²⁺ signals (Parker and Ivorra 1990; Parker et al. 1996). He showed that as the IP₃ concentration increases, it triggers a hierarchy of elementary Ca²⁺ release events, beginning with the openings of single IP₃R (Ca²⁺ blips), progressing to the coordinated openings of a cluster of several IP₃R (Ca²⁺ puffs) and finally, with sufficient IP₃, culminating in a regenerative Ca²⁺ wave invading the entire cell (Bootman et al. 1997; Demuro and Parker 2007). The demonstration, in 1987 by Masamitsu Iino, that IP₃R are stimulated by cytosolic Ca²⁺ (Iino 1987), and the later widespread recognition that all IP₃R are biphysically regulated by cytosolic Ca²⁺ (Iino 1990; Taylor and Laude 2002), provided what has become the most widely accepted explanation for the recruitment of elementary Ca²⁺-release events. Namely, that CICR, already an established feature of RyR (Endo et al. 1970), allows an active IP₃R to propagate its activity to neighboring IP₃R.
capable of regulating diverse cellular events depends largely on the spatiotemporal complexity of cytosolic Ca\(^{2+}\) signals (Berridge et al. 2000). If we are to understand how Ca\(^{2+}\) functions as a ubiquitous intracellular messenger, we must explain how IP\(_3\)-evoked Ca\(^{2+}\) signals grow from the opening of a single IP\(_3\)R to much larger events. That explanation depends, ultimately, on putting IP\(_3\)R into appropriate places within the cell, and on the interactions between IP\(_3\) and Ca\(^{2+}\) in regulating the opening of IP\(_3\)R. In recent reviews (Taylor et al. 2009a; Taylor et al. 2009b) and original reports, we have described how IP\(_3\)R are co-translationally targeted to the ER and then retained there by sequences within their transmembrane domains (TMD) (Parker et al. 2004; Pantazaka and Taylor 2010). We have also suggested that within the ER, IP\(_3\) causes IP\(_3\)R to assemble into small clusters within which their regulation by both IP\(_3\) and Ca\(^{2+}\) is retuned to facilitate the Ca\(^{2+}\)-mediated recruitment of IP\(_3\)R activity by an active neighbor (Rahman and Taylor 2009; Rahman et al. 2009). Here, we focus entirely on the interactions between Ca\(^{2+}\) and IP\(_3\) in regulating IP\(_3\)R activity, and the extent to which we can explain those interactions at the structural level.

REGULATION OF IP\(_3\) RECEPTORS BY Ca\(^{2+}\) AND IP\(_3\)

Activation of IP\(_3\)R requires both IP\(_3\) and its permeating ion, Ca\(^{2+}\) (Finch et al. 1991; Marchant and Taylor 1997; Adkins and Taylor 1999; Taylor and Laude 2002; Foskett et al. 2007). There are reports of IP\(_3\)-independent activation of IP\(_3\)R by CaBP1 (Yang et al. 2002), a member of the neuronal Ca\(^{2+}\)-sensor family, and by G\(\beta\gamma\) subunits (Zeng et al. 2003), but the physiological relevance is unclear (Haynes et al. 2004; Nadif Kasri et al. 2004). The current consensus is that binding of IP\(_3\) to the IP\(_3\)R is essential for its activation, but whether all four IP\(_3\)-binding sites of the tetrameric IP\(_3\)R must be occupied is unresolved. Positively cooperative responses to IP\(_3\) in some (Dufour et al. 1997; Marchant and Taylor 1997; Tu et al. 2005a), though not all, studies (Finch et al. 1991; Watras et al. 1991; Laude et al. 2005), and delays before the first response to IP\(_3\) that decrease with increasing IP\(_3\) concentration (Marchant and Taylor 1997), indicate that channel opening requires occupancy of more than one IP\(_3\)-binding site. However, gating by IP\(_3\) of heteromeric IP\(_3\)R in which at least one subunit is mutated to prevent IP\(_3\) binding suggests that occupancy of fewer than four IP\(_3\)-binding sites may be sufficient to cause some channel opening (Boehning and Joseph 2000a). IP\(_3\)R subtypes differ in their affinities for IP\(_3\), with the general consensus being that IP\(_3\)R2 is more sensitive than IP\(_3\)R1, and both are considerably more sensitive than IP\(_3\)R3 (Tu et al. 2005b; Iwai et al. 2007). In the cellular context, however, differences in expression level (Dellis et al. 2006; Tovey et al. 2010), subcellular distribution (Petersen et al. 1999), post-transcriptional and post-translational modifications, and association of IP\(_3\)R with accessory proteins (Patterson et al. 2004) may be more important determinants of sensitivity.

Soon after the first report of IP\(_3\)-evoked Ca\(^{2+}\) release, cytosolic Ca\(^{2+}\) was shown also to regulate IP\(_3\)R (Suematsu et al. 1984; Jean and Klee 1986); thereafter, it emerged that the effects of Ca\(^{2+}\) were biphasic, with modest increases in cytosolic Ca\(^{2+}\) concentration enhancing responses to IP\(_3\), while higher concentrations were inhibitory (Iino 1987; Iino 1990; Finch et al. 1991; Parry et al. 1992; Marshall and Taylor 1993). This provided yet another parallel with RyR, which are also biphasically regulated by Ca\(^{2+}\) (Hamilton 2005). The coregulation of IP\(_3\)R by IP\(_3\) and Ca\(^{2+}\) in permeabilized cells was confirmed by single-channel recordings of IP\(_3\)R1 reconstituted into lipid bilayers (Bezprozvanny et al. 1991; Striggov and Ehrlich 1996; Kaftan et al. 1997; Ramos-Franco et al. 1998a; Ramos-Franco et al. 1998b; Tu et al. 2002; Tu et al. 2005b) and in native nuclear membranes (Stehno-Bittel et al. 1995; Mak et al. 1998; Boehning et al. 2001a; Marchenko et al. 2005). In each case, the single-channel open probability (\(P_0\)) of IP\(_3\)-activated channels displayed a bell-shaped dependence on cytosolic Ca\(^{2+}\) concentration. Evidence that purified IP\(_3\)R1 could be stimulated, but not inhibited, by cytosolic Ca\(^{2+}\) (Thrower et al. 1998; Michikawa et al. 1999).
finity for Ca2+ with different bivalent cations and in their binding sites, which differ in their interactions to explain regenerative Ca2+ essential elements of many models proposed (Tu et al. 2005b), and the neuronal S2+ example, is very sensitive to cytoplasmic ATP the disparate findings) and by processing of these, too, may have contributed to some of modulated by other intracellular signals (and what Ca2+ might be mediated by an accessory protein, often derived from bilayer recordings, in which Ca2+ was suggested not to inhibit IP\textsubscript{3}R2 or IP\textsubscript{3}R3 (Horne and Meyer 1995; Hagar et al. 1998; Miyakawa et al. 1999; Ramos-Franco et al. 2000). The balance of opinion, supported by numerous studies of all three IP\textsubscript{3}R subtypes and using both single-channel and Ca2+-efflux studies, is that all three IP\textsubscript{3}R subtypes are biphasically regulated by cytosolic Ca2+ (Marshall and Taylor 1993; Oancea and Meyer 1996; Dufour et al. 1997; Missiaen et al. 1998; Miyakawa et al. 1999; Swatton et al. 1999; Boehning and Joseph 2000b; Mak et al. 2000; Mak et al. 2001; Tu et al. 2005a). Two independent Ca2+-binding sites, which differ in their interactions with different bivalent cations and in their affinities for Ca2+, mediate the stimulatory and inhibitory effects of cytosolic Ca2+ (Marshall and Taylor 1994; Striggow and Ehrlich 1996; Hajnóczky and Thomas 1997). Both sites are essential elements of many models proposed to explain regenerative Ca2+ signals (Lechleiter et al. 1991; Berridge 1997). This core biphasic pattern of regulation by cytosolic Ca2+ may be modulated by other intracellular signals (and these, too, may have contributed to some of the disparate findings) and by processing of IP\textsubscript{3}R, Ca2+-dependent inhibition of IP\textsubscript{3}R3, for example, is very sensitive to cytoplasmic ATP (Tu et al. 2005b), and the neuronal S2+ splice variant of IP\textsubscript{3}R1 has a broader Ca2+-dependence than the peripheral S2- form (Tu et al. 2002). However, IP\textsubscript{3} is the major influence on what Ca2+ does to IP\textsubscript{3}R: The two ligands are essential co-agonists of IP\textsubscript{3}R (Finch et al. 1991). Activation of IP\textsubscript{3}R1 by Ca2+ is positively cooperative, enabling P0 to reach its maximum value over a narrow range of Ca2+ concentrations, suggesting that IP\textsubscript{3}R1 may be well suited to mediating CICR and regenerative Ca2+ signals. Activation of IP\textsubscript{3}R3 is less cooperative, occurs over a broader range of Ca2+ concentrations, and requires lesser activation, making it well suited as a trigger for Ca2+ release as the level of IP\textsubscript{3} increases (Mak et al. 2001; Foskett et al. 2007).

Foskett and colleagues have argued, from their analyses of patch-clamp recordings of nuclear IP\textsubscript{3}R, that IP\textsubscript{3} decreases the sensitivity of the IP\textsubscript{3}R to inhibition by cytosolic Ca2+, and that this alone is the means whereby IP\textsubscript{3} stimulates channel opening (Mak et al. 1998; Mak et al. 2001; Ionescu et al. 2006). This simple explanation, where IP\textsubscript{3} serves only to relieve tonic inhibition by resting Ca2+ concentrations, is impossible to reconcile with their observation that pretreatment of cells with Ca2+-free media abolishes Ca2+ inhibition without preventing IP\textsubscript{3} from activating IP\textsubscript{3}R (Mak et al. 2003). This simple model was later elaborated to include at least three different Ca2+ sensors (Mak et al. 2003), but at the core of this revised scheme is a single Ca2+-binding site that switches from being inhibitory in the absence of IP\textsubscript{3} to stimulatory in its presence (Mak et al. 2003). The essential feature of this scheme is consistent with our initial model, derived from rapid superfusion analysis, which suggests that IP\textsubscript{3} both relieves Ca2+ inhibition and promotes binding of Ca2+ to a stimulatory site (Marchant and Taylor 1997; Adkins and Taylor 1999). The latter is essential for the channel to open. We, however, argue that the stimulatory and inhibitory Ca2+-binding sites are distinct (Marshall and Taylor 1994). We suggest, therefore, that the essential role of IP\textsubscript{3} is to promote Ca2+ binding to a stimulatory Ca2+-binding site. IP\textsubscript{3}, by priming this site, allows Ca2+ to provide instantaneous control over whether the channel opens (Fig. 1A).

The structural basis for Ca2+-regulation of IP\textsubscript{3}R is unresolved: it may be either direct, via Ca2+ binding to a site intrinsic to the IP\textsubscript{3}R or via an accessory Ca2+-binding protein (Taylor et al. 2004). Stimulation of IP\textsubscript{3}R by cytosolic Ca2+ is universally observed even with purified IP\textsubscript{3}R reconstituted into lipid bilayers (Ferris et al. 1989; Hirota et al. 1995; Michikawa et al. 1999), suggesting that this essential Ca2+-binding site probably resides within the primary sequence of the IP\textsubscript{3}R. At least seven cytosolic Ca2+-binding sites have been identified within IP\textsubscript{3}R1 (Sienaert et al. 1996; Sienaert et al. 1997), but the physiological relevance of these sites is unresolved. Two of the sites (residues 304-381 and 378-450) are within the IP\textsubscript{3}-binding
core, for which there is a high-resolution structure (Bosanac et al. 2002). This structure shows two surface-exposed clusters of acidic residues that overlap with residues in the second N-terminal Ca$^{2+}$-binding region. However, point mutations of several of these acidic residues had no effect on Ca$^{2+}$-regulation of IP$_3$R (Joseph et al. 2005). The remaining Ca$^{2+}$-binding sites fall within the central region of the IP$_3$R (Sienaert et al. 1996; Sienaert et al. 1997). The site between residues 1347–1426 is interesting because its proximity to a calmodulin (CaM)-binding region is reminiscent of RyR, which have two CaM-binding regions within ~200 residues of high-affinity Ca$^{2+}$-binding sites, and a third flanked by two high-affinity Ca$^{2+}$-binding sites (Chen and MacLennan 1994). Interactions between these sites have been proposed to contribute to regulation of RyR by Ca$^{2+}$ and CaM (Chen and MacLennan 1994). None of the Ca$^{2+}$-binding sites within IP$_3$R contain EF-hands or any other known Ca$^{2+}$-binding motif, and none have obvious sequence similarity with similar regions in RyR. However, each site has clusters of negatively charged residues that may coordinate Ca$^{2+}$ (Sienaert et al. 1997). There is presently no evidence to link any of these sites directly to Ca$^{2+}$ regulation of IP$_3$R. The only tangible link between specific residues and Ca$^{2+}$ regulation comes from mutagenesis of a glutamate residue that is conserved in all IP$_3$R and RyR. Mutation of this residue in RyR massively reduced the Ca$^{2+}$ sensitivity of the channel (Chen et al. 1998; Li and Chen 2001). Mutation of the same residue (Glu-2100) to another acidic residue (Asp) caused a ~5- to 10-fold decrease in the Ca$^{2+}$-sensitivity of the IP$_3$R to both stimulation and inhibition, abolished oscillatory Ca$^{2+}$ transients in response to agonist stimulation, and reduced the Ca$^{2+}$-binding affinity of a large fragment that includes the residue (Miyakawa et al. 2001; Tu et al. 2003). A rather puzzling aspect of these results is the observation that mutation of a single residue similarly attenuates both stimulation and inhibition by Ca$^{2+}$, when other evidence suggests that the two effects are mediated by distinct sites. This, together with the lack of direct evidence that Ca$^{2+}$ is coordinated by the conserved glutamate, leaves open the possibility that rather than itself contributing to an essential Ca$^{2+}$-binding site, this residue may be allosterically coupled to the site.

Ca$^{2+}$-mediated inhibition of IP$_3$R is widely assumed to contribute to termination of local cytosolic Ca$^{2+}$ signals, but it remains far from clear whether such inhibition is mediated by Ca$^{2+}$ binding directly to IP$_3$R or to an associated protein (Taylor and Laude 2002). The effects of

Figure 1. Regulation of IP$_3$R by cytosolic and luminal Ca$^{2+}$. (A) Binding of IP$_3$ (black circle) to the IP$_3$R determines whether a stimulatory (green) or inhibitory (red) Ca$^{2+}$-binding site is available (Adkins and Taylor 1999). IP$_3$ binding causes the stimulatory site to become accessible and the inhibitory site to be concealed; binding of Ca$^{2+}$ (blue circle) to the former then triggers opening of the channel. (B) Luminal Ca$^{2+}$ is proposed to tune the sensitivity of the IP$_3$R to cytosolic IP$_3$ and Ca$^{2+}$ such that full stores (i) are most sensitive to IP$_3$. As the IP$_3$R opens (ii) and the stores lose Ca$^{2+}$, they are proposed to lose sensitivity to IP$_3$ until eventually the IP$_3$R closes, despite the continued presence of the cytosolic stimuli, trapping Ca$^{2+}$ within the ER (iii). Conversely, stores regain their sensitivity to IP$_3$ as the stores refill, perhaps thereby determining the interval between Ca$^{2+}$ spikes in stimulated cells (Berridge 2007).
Ca$^{2+}$ on IP$_3$ binding differ between subtypes: It inhibits binding to IP$_3$R1 (Worley et al. 1987; Supattapone et al. 1988; Joseph et al. 1989; Varney et al. 1990; Richardson and Taylor 1993; Benevolensky et al. 1994; Cardy et al. 1997; Yoneshima et al. 1997), but the effects of Ca$^{2+}$ on IP$_3$ binding to IP$_3$R from cells expressing predominantly IP$_3$R2 or IP$_3$R3 are confused (Pietri et al. 1990; Mohr et al. 1993; Marshall and Taylor 1994; Cardy et al. 1997; Yoneshima et al. 1997; Lin et al. 2000; Swatton and Taylor 2002). These conflicting results, and evidence that purified IP$_3$R1 is not inhibited by Ca$^{2+}$ (Danoff et al. 1988; Richardson and Taylor 1993; Benevolensky et al. 1994; Lin et al. 2000), lend some support to the idea that Ca$^{2+}$ inhibition may be mediated by an accessory protein. It is, however, noteworthy that deletion of the suppressor domain (SD, residues 1-223) of IP$_3$R1, which appears not to include a Ca$^{2+}$-binding site, abolishes inhibition of IP$_3$ binding by Ca$^{2+}$ (Sienaert et al. 2002). This suggests that effective regulation by an accessory protein might require the SD.

Calmodulin (CaM) is one candidate for the accessory protein through which Ca$^{2+}$ inhibition is exercised (Nadif Kasri et al. 2002; Taylor and Laude 2002). CaM is a ubiquitously expressed, EF-hand containing, Ca$^{2+}$-binding protein that serves as the Ca$^{2+}$-sensor for many cellular events (Gnegy 1993). All IP$_3$R subtypes are inhibited by Ca$^{2+}$-CaM (Hirota et al. 1999; Michikawa et al. 1999; Missiaen et al. 1999; Adkins et al. 2000; Missiaen et al. 2000), and CaM has been shown to restore Ca$^{2+}$ inhibition to purified IP$_3$R (Hirota et al. 1999; Michikawa et al. 1999; Nosyreva et al. 2002). Yet, it has proven difficult to relate these functional effects of CaM to either its effects on IP$_3$ binding or to identified CaM-binding sites within IP$_3$R. CaM inhibits IP$_3$ binding to IP$_3$R1 in a Ca$^{2+}$-independent manner (Patel et al. 1997; Cardy and Taylor 1998), through a site that probably lies within the SD (Adkins et al. 2000; Sienaert et al. 2002). Its properties are clearly inconsistent with the ability of CaM to inhibit IP$_3$R function only in the presence of Ca$^{2+}$. There is a high-affinity Ca$^{2+}$-CaM-binding site within the central region of IP$_3$R1 and IP$_3$R2, but not IP$_3$R3 (Yamada et al. 1995; Lin et al. 2000). However, mutations that prevented Ca$^{2+}$-CaM binding to this site had no effect on Ca$^{2+}$-dependent inhibition of IP$_3$R (Zhang and Joseph 2001; Nosyreva et al. 2002). This evidence and the absence of the site from IP$_3$R3 suggest that the central Ca$^{2+}$-CaM-binding site cannot be responsible for Ca$^{2+}$ inhibition of IP$_3$R. An additional high-affinity Ca$^{2+}$-CaM-binding site is created in IP$_3$R1 after removal of the S2 splice region: While this may increase the Ca$^{2+}$-CaM sensitivity of peripheral S2 IP$_3$R1, it is not a universal candidate for mediating Ca$^{2+}$ inhibition of IP$_3$R (Islam et al. 1996; Lin et al. 2000). Recently, it was suggested that bound CaM is essential for IP$_3$R function because a peptide antagonist of CaM inhibited IP$_3$-evoked Ca$^{2+}$ release (Nadif Kasri et al. 2006). It is now clear that this peptide acts directly on IP$_3$R, with no requirement for CaM (Sun and Taylor 2008). While this eliminates an essential role for tethered CaM, it raises the intriguing possibility that an endogenous CaM-like structure might be essential for IP$_3$R activation (Sun and Taylor 2008).

In summary, all IP$_3$R subtypes are inhibited by Ca$^{2+}$-CaM, but the molecular basis of this inhibition has not been established. It seems, on balance, that CaM is unlikely to be the accessory protein through which Ca$^{2+}$ universally inhibits IP$_3$R. That need not preclude a role for CaM in modulating IP$_3$R function (Taylor and Laude 2002), just as it does for RyR (Chen et al. 1997; Fruen et al. 2000; Rodney et al. 2001), but we must look elsewhere for the site through which Ca$^{2+}$ inhibits IP$_3$R.

We turn now to the luminal surface of the IP$_3$R, where, and again drawing parallels with RyR, we consider regulation by luminal Ca$^{2+}$. Persuasive evidence suggests that Ca$^{2+}$ release by RyR may be terminated before Ca$^{2+}$ stores are entirely depleted because luminal Ca$^{2+}$ is required to maintain RyR activity (György and György 1998; Launikonis et al. 2006; Jiang et al. 2008), possibly via its interaction with calsequestrin, a luminal high-capacity Ca$^{2+}$-binding protein (Launikonis et al. 2006; Terentiev et al. 2006). A similar scheme has been proposed to account for two features of IP$_3$-evoked Ca$^{2+}$ release: the initiation of Ca$^{2+}$ release after the
IP₃ Receptors

quiescent interspike interval during repetitive Ca²⁺ spikes (Berridge 2007) and quantal Ca²⁺ release via IP₃R. The latter describes the situation wherein unidirectional Ca²⁺ efflux from intracellular stores terminates before the stores have fully emptied after stimulation with submaximally effective concentrations of IP₃, without loss of their ability to respond to a further increase in IP₃ concentration (Muallem et al. 1989; Meyer and Stryer 1990; Taylor and Potter 1990; Oldershaw et al. 1991; Bootman et al. 1992; Brown et al. 1992; Combettes et al. 1992; Ferris et al. 1992; Hirota et al. 1995). The proposal is that luminal Ca²⁺ sets the gain on the regulation by cytosolic IP₃ and Ca²⁺, so that as the luminal free Ca²⁺ concentration falls, it causes the sensitivity of the IP₃R to IP₃ to fall until, as Ca²⁺ leaks from the ER, the IP₃R closes despite the continued presence of cytosolic IP₃ and residual Ca²⁺ within the ER (Irvine 1990). Conversely, as stores refill between Ca²⁺ spikes in an intact cell, the model predicts that the sensitivity of the IP₃R increases until it exceeds the threshold at which prevailing cytosolic IP₃ and Ca²⁺ concentrations become sufficient to trigger opening (Fig. 1B). Despite the enduring appeal of the model, evidence that luminal Ca²⁺ directly regulates IP₃R is not yet entirely convincing.

Stores loaded with Ca²⁺ have been shown to become more sensitive to IP₃ in some studies (Missiaen et al. 1992; Nunn and Taylor 1992; Oldershaw and Taylor 1993; Parys et al. 1993; Missiaen et al. 1994; Horne and Meyer 1995; Combettes et al. 1996; Tanimura and Turner 1996), but not in others (Combettes et al. 1992; Shuttleworth 1992; Combettes et al. 1993; van de Put et al. 1994). However, even the supportive results do not eliminate the possibility that the increased sensitivity to IP₃ arises from having Ca²⁺ pass through active IP₃R and increase their sensitivity from the cytosolic surface. Similar difficulties have plagued analyses of the effects of luminal Ca²⁺ on RyR (Tripathy and Meissner 1996; Laver 2007; Laver 2009). In bilayer recordings of IP₃R1, where essential accessory proteins may be lost, luminal Ca²⁺ failed to potentiate the Ca²⁺ release evoked by IP₃ (Bezprozvannyy and Ehrlich 1994). Despite the caveats, regulation of IP₃R by luminal Ca²⁺ deserves serious consideration. A high-affinity Ca²⁺-binding site within the luminal loop linking TMD 5 and 6 (Sienaert et al. 1996) contains conserved acidic residues that could mediate luminal Ca²⁺ regulation, although the sub-µM affinity of this site for Ca²⁺ would be ill-suited to detecting likely changes in luminal Ca²⁺ concentration. Luminal accessory proteins, akin to those that regulate RyR, are another possibility, with ERp44 being one candidate. ERp44 belongs to the thioredoxin protein family and regulates IP₃R in a pH- and luminal Ca²⁺-dependent manner (Higo et al. 2005). Binding of ERp44 to the TMD5-6 loop of IP₃R inhibits channel activity, and the interaction is disrupted by high concentrations of Ca²⁺ consistent with the suggestion that luminal Ca²⁺ might enhance IP₃R activity.

To summarize, IP₃ works by tuning the Ca²⁺ sensitivity of the IP₃R: It stimulates Ca²⁺ binding to a stimulatory site and inhibits Ca²⁺ binding to an inhibitory site (Fig. 1A). Binding to the stimulatory site is the trigger for opening of the pore. The identity of neither Ca²⁺-binding site is known: The stimulatory site probably resides on the N-terminal to which IP₃ binds, the C-terminal region with its six transmembrane regions (TMD) (Galvan et al. 1999), and a large intervening sequence (Fig. 2A). Functional IP₃Rs are tetrameric, assembled either from identical subunits or from mixtures of the three subtypes and their many splice variants (Taylor et al. 1999; Foskett et al. 2007). Several structures of the entire IP₃R1 have been published, each derived from single particle analysis of images from electron microscopy (Hamada and Mikoshiba

Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004010
2002; Jiang et al. 2002a; da Fonseca et al. 2003; Hamada et al. 2003; Serysheva et al. 2003; Sato et al. 2004). These studies confirm the tetrameric state of IP$_3$R, but variability between the structures and their relatively low resolution (~ 30 Å) have, so far, limited any realistic interpretation of the structural basis of IP$_3$R activation (Taylor et al. 2004) (Fig. 2B). Whether structures of recombinant IP$_3$R will contribute to resolving this impasse remains to be seen (Wolfram et al. 2010).

There has been more progress with RyR, although only recently has the resolution of these structures (~ 30 Å) improved on that obtained for IP$_3$R. These structures of native RyR, and all three subtypes of recombinant RyR reveal a shape like a square mushroom with a very large, open cytoplasmic structure tethered to a much smaller TMD region (the stalk). At ~ 30 Å resolution, the structures of the three RyR subtypes are almost indistinguishable, and because they, like the three subtypes of IP$_3$R, share about 65% sequence identity, it seems reasonable to suppose that the 3D structures of all IP$_3$R are also likely to be similar to each other. These studies of RyR have identified positions of critical residues within the 3D structure, the sites to which accessory proteins bind, and conformational changes associated with opening of the pore (Orlova et al. 1996; Serysheva et al. 2005; Wang et al. 2007; Jones et al. 2008).

Activation of RyR is associated with considerable changes in both the pore and cytoplasmic regions: The four corners of the latter dip down toward the SR, while the central region lifts away from it (Samso et al. 2009). It is noteworthy, in

Figure 2. Major structural domains of IP$_3$R. (A) The three key regions defined by the primary sequence of a single IP$_3$R subunit are highlighted: the N-terminal with its SD and IBC, the C-terminal region with its six TMD and pore, and the large central region. Atomic structures of the SD (Bosanac et al. 2005) and IBC with IP$_3$ bound (Bosanac et al. 2002) are also shown. (B) Two views of the IP$_3$R derived from single particle analysis (da Fonseca et al. 2003) (top, from the cytosol; bottom, across the ER membrane with the ER lumen at the top). (C) A possible structure of the IP$_3$R pore, with a luminal selectivity filter and a constriction formed by the tepee-like structure of TMD6. Only two of the four IP$_3$R subunits are shown.

C.W. Taylor and S.C. Tovey
IP₃ Receptors

the context of schemes for activation of IP₃R (see below), that large movements of some cytoplasmic domains of RyR1 appear to occur around hinges that link them to relatively immobile domains.

The highest resolution maps (~10Å), although still insufficient to map 3D structure to primary sequence, have come close to defining the likely secondary structure of the pore of RyR1 (Ludtke et al. 2005; Samso et al. 2005; Samso et al. 2009). This region appears to have six α-helices (Samso et al. 2009), consistent with models of RyR that suggest six TMD (Meur et al. 2007). Along the central axis, it has a luminal constriction (probably the selectivity filter, see below) and a tepee-like assembly of four inner helices (likely to be TMD6), with the apex pointing into the cytoplasmic structure. By analogy with MthK channels, this constriction may form the gate of the RyR. Kinking of the inner helix around a central Gly residue causes splitting of the tepee and thereby opening of the channel for MthK (Jiang et al. 2002b). One structure (Samso et al. 2009) is consistent with a similar mechanism operating for RyR1, but another structure (Ludtke et al. 2005) and mutagenesis of the critical Gly (G4863 in RyR1) (Wang et al. 2003) contradict it. These insights into the possible workings of the RyR pore are significant for IP₃R, because it is within the pore region (TMD5-6) that RyR and IP₃R share the greatest sequence similarity. We turn, therefore, to the pore of the IP₃R to explore its properties and structure.

All IP₃R (like all RyR) are cation channels with extremely large conductance, but only modest selectivity for Ca²⁺ over monovalent cations (permeability ratio, $P_{Ca}/P_K \approx 6$) (Williams et al. 2001; Foskett et al. 2007). The voltage-gated and store-operated Ca²⁺ channels that mediate Ca²⁺ entry across the plasma membrane are vastly more selective ($P_{Ca}/P_K > 1000$). In the ER, where most IP₃Rs are located, this lack of selectivity is unlikely to be a problem because Ca²⁺ is probably the only cation with an appreciable electrochemical gradient across the ER membrane. In effect, the ER Ca²⁺ pump (SERCA), by creating a steep Ca²⁺ concentration gradient across the ER membrane, assumes responsibility for determining which cations flow through an open IP₃R. Indeed, the K⁺ permeability of IP₃R and RyR may facilitate rapid Ca²⁺ release by allowing K⁺ to move into the ER to electrically compensate the efflux of Ca²⁺ (Gillespie and Fill 2008). The pore of the IP₃R, like that of RyR, is formed by the final pair of TMD (TMD5-6) and the luminal loop that links them from each of the four subunits (Ramos-Franco et al. 1999; Williams et al. 2001) (Fig. 2C). The loop includes a sequence (GGVGD in IP₃R) similar to that of the selectivity filter of K⁺ channels (Balshaw et al. 1999), consistent with the idea that the overall architecture of the pore region may be broadly similar to that of K⁺ channels (MacKinnon 2004). For both IP₃R and RyR, however, the pore must be larger and less-selective than for K⁺ channels, and probably able to accommodate only one cation at a time (Williams et al. 2001). This model for the IP₃R pore, where TMD5 (the outer helix) and TMD6 (inner helix) cradle a short pore helix and selectivity filter (Fig. 2C), is consistent with mutagenesis of residues within this region affecting ion permeation (Boehning et al. 2001b; Dellis et al. 2006; Dellis et al. 2008; Schug et al. 2008), with biophysical evidence that the narrowest region of the pore lies close to the luminal entrance of the RyR (Williams et al. 2001) and with the intermediate resolution structures of the pore region of RyR1 (Samso et al. 2009). A conserved acidic residue (D2550 in IP₃R1) at the luminal end of the selectivity filter (Fig. 2C) contributes to the modest Ca²⁺ selectivity of IP₃R (Boehning et al. 2001b; Dellis et al. 2008) and RyR (Gao et al. 2000; Wang et al. 2005; Gillespie 2008), but the structural determinants of ion selectivity and permeation by IP₃R are otherwise poorly understood. The changes in pore structure that allow it to open are also minimally understood. Indeed, mutation of the conserved Gly within TMD6 of IP₃R (G2586 in IP₃R1), which might have been thought to provide the gating hinge (Samso et al. 2009), appears not to prevent IP₃ from opening IP₃R (Schug et al. 2008). In short, aside from knowing the regions of primary sequence that form the IP₃R pore (TMD5-6) and a rather vague notion that its structure perhaps resembles that of K⁺ channels, we have only the most
rudimentary knowledge of the structural determinants of how the IP₃R pore opens and selects between ions.

The conformational changes in the IP₃R that lead to opening of its pore are initiated by IP₃ binding to the IP₃-binding core (IBC, residues 224–604 in IP₃R1) (Fig. 3A). Although IP₃ is the only endogenous ligand of the IBC, there are many synthetic agonists, all of which have structures equivalent to the equatorial 6-hydroxyl and the 4- and 5-phosphate groups of IP₃ (Fig. 3A) (Rossi et al. 2010). It is noteworthy that neither of the immediate products of IP₃ metabolism, IP₂ and IP₄, binds to the IBC; both metabolic pathways are therefore effective means of terminating activation of IP₃R by IP₃. An atomic structure of the IBC with IP₃ bound (Bosanac et al. 2002) shows IP₃ held within a clam-like structure in which the phosphate groups of IP₃ are coordinated by basic residues (Fig. 3A). The two sides of the clam, the α- and β-domains, form a network of interactions with the essential groups of IP₃. The 4-phosphate is hydrogen-bonded with residues in the β-domain, the 5-phosphate forms hydrogen bonds with residues predominantly in the α-domain, and the 6-hydroxyl interacts with the backbone of a residue within the α-domain. It is easy to imagine how these interactions with IP₃ might pull the α- and β-domains together, causing the clam to close in a manner similar to glutamate binding to ionotropic glutamate receptors (Mayer 2006). Structures of the IBC without IP₃ bound are urgently needed to assess this proposal, but two lines of evidence lend circumstantial support. First, the IBC adopts a more constrained structure when it binds IP₃ (Chan et al. 2007). Second, adenophostins, which are high-affinity agonists of IP₃R (Rossi et al. 2010), retain some activity after loss of the 3-phosphate (analogous to the 5-phosphate of IP₃), probably because their adenine moiety...
interacts strongly with a residue in the α-domain and thereby partially mimics the clam-closure that would otherwise require the 5-phosphate to bind to the α-domain (Sureshan et al. 2009). We envisage, therefore, that when IP₃ binds to the IBC, the essential vicinal phosphate groups through their contacts with the α- and β-domains effectively cross-bridge the two sides of the clam-like structure, causing it to close, and thereby initiate the processes that will culminate in opening of the pore.

It is worth commenting briefly on available antagonists of IP₃R because of their obvious value as experimental tools. There are no specific antagonists of IP₃R, although with appropriate caution some antagonists can yield useful insight (Michelangeli et al. 1995). Heparin is a competitive antagonist of IP₃ (Worley et al. 1987), although it is not membrane-permeant and, among many additional effects, it uncouples G-protein-coupled receptors from their G proteins (Dasso and Taylor 1991) and activates RyR (Ehrlich et al. 1994). 2-aminoethyl diphenylboronate (2-APB) is membrane-permeant and inhibits IP₃-evoked Ca²⁺ release without affecting IP₃ binding (Maruyama et al. 1997); its mechanism of action is unresolved. However, 2-APB also inhibits Ca²⁺ uptake and many other Ca²⁺ channels. It has recently aroused interest as a modulator of STIM and, therefore, store-operated Ca²⁺ entry (Goto et al. 2010). A screen of 2-APB analogues with selectivity for store-operated Ca²⁺ entry may yet also provide IP₃R-selective antagonists (Goto et al. 2010). Xestospongin, isolated from an Australian sponge, are high-affinity membrane-permeant inhibitors of IP₃-evoked Ca²⁺ release that do not affect IP₃ binding (Gafni et al. 1997), but they, too, have side effects (Solovyova et al. 2002). High concentrations of caffeine inhibit IP₃-evoked Ca²⁺ release (Parker and Ivorra 1991) without affecting IP₃ binding (Worley et al. 1987), but caffeine also stimulates RyR, inhibits cyclic nucleotide phosphodiesterases, and interferes with many Ca²⁺ indicators. Membrane-permeant peptide antagonists of IP₃R may provide another potential source of selective antagonists (Sun and Taylor 2008).

How IP₃ binding to the IBC leads to binding of Ca²⁺ to the IP₃R, and thereby opening of the pore, remains largely unknown, but it is clear that the suppressor domain (SD, residues 1-223 of IP₃R1), which is connected to the IBC by a flexible linkage (Chan et al. 2007), plays an essential role. The clearest evidence is that IP₃ binds to IP₃R without an SD, but it fails to open the pore (Uchida et al. 2003; Szlufcik et al. 2006). The name of this region derives from the observation that, although the SD itself is unlikely to make any direct contacts with IP₃, its presence decreases the affinity of IP₃R for IP₃ (Uchida et al. 2003). We have interpreted this effect to reflect the use of binding energy from the binding of IP₃ to the IBC to cause a conformational change within the SD. This interpretation gains considerable support from our analysis of partial agonists of the IP₃R (Rossi et al. 2009). The crux of our argument is that the energy provided by agonist binding drives both the conformational changes that lead to receptor activation and tighter binding of the ligand to its receptor. There is, therefore, a tradeoff between these two claims on the binding energy. Partial agonists, because they less effectively activate the receptor, divert more binding energy into stabilizing the binding, while full agonists evoke more substantial conformational changes; therefore, less binding energy remains to stabilize binding. Our results show that although full and partial agonists bind with similar affinities to the IBC, the SD causes the affinity of full agonists to decrease more than for partial agonists (Rossi et al. 2009). Quantitative analyses of these results lead to the conclusion that the most energetically costly conformational change in the IP₃R evoked by IP₃ occurs within its N-terminal (residues 1-604), and that these conformational changes pass entirely via the SD to the pore region (Rossi et al. 2009). We suggest, therefore, that the SD is the essential link between IP₃ binding to the IBC and the subsequent conformational changes that lead to opening of the pore. Without a structure of the entire N-terminal of the IP₃R, we can only speculate on the physical relationship between the IBC and SD, but our results with partial agonists and mutagenesis are...
consistent with three exposed loops of the SD (β2–β3, β5–β6, and β7–β8, blue in Fig. 3B) being the most likely sites of interaction with the IBC (Rossi et al. 2009).

Remarkably, and despite their rather low sequence identities (~30%), the crystal structures of the SD from IP3R1 (Bosanac et al. 2005) and of the analogous N-terminal regions from RyR1 and RyR2 (Amador et al. 2009; Lobo and Van Petegem 2009) are extremely similar. Several mutations associated with malignant hyperthermia and central core disease (RyR1) or catecholaminergic polymorphic ventricular tachycardia (RyR2), all of which impair the normal regulation of gating, are clustered in an exposed loop (β8–β9) of the N-terminal of RyR (Amador et al. 2009). Furthermore, and consistent with the N-terminal of the RyR mediating essential interdomain interactions, a peptide derived from this region causes RyR2 to open spontaneously, apparently by uncoupling an interaction between the endogenous loop and a central region of the RyR that includes residues 2460–2495 (Oda et al. 2005; Tateishi et al. 2009). In light of the conservation of structure between IP3R and RyR, it is tempting to speculate that the same loop in the IP3R, perhaps mediated by structural links between it and the SD, is unresolved. We speculate that one face of the SD interacts directly with the IBC, and the opposite face interacts with the structure through which conformational changes pass to the pore. The pore is a relatively nonselective, large-conductance cation channel formed by the tetrameric assembly of the TMD5-6 regions of each subunit. Its structure is unresolved but likely to be broadly similar to K+ channels with a selectivity filter and gate at opposite ends of its membrane-spanning structure.

ACKNOWLEDGMENTS

Work from the authors’ laboratory is supported by the Wellcome Trust.

REFERENCES

Combettes L, Cheek TR, Taylor CW. 1996. Regulation of inositol trisphosphate receptors by luminal Ca2+ contributes to quantal Ca2+ mobilization. EMBO J 15: 2086–2093.

C.W. Taylor and S.C. Tovey

Gyorke I, Gyorke S. 1998. Regulation of the cardiac ryanodine receptor channel by luminal Ca$^{2+}$ involves luminal Ca$^{2+}$ sensing sites. *Biophys J* 75: 2801–2810.

IP$_3$ Receptors

Kafant EJ, Ehrlich BE, Wutras J. 1997. Inositol 1,4,5-trisphosphate (InsP$_3$) and calcium interact to increase the dynamic range of InsP$_3$ receptor-dependent calcium signaling. *J Gen Physiol* 110: 529–538.

Li P, Chen SR. 2001. Molecular basis of Ca$^{2+}$ activation of the mouse cardiac Ca$^{2+}$ release channel (ryanodine receptor). *J Gen Physiol* 118: 33–44.

Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004010
C.W. Taylor and S.C. Tovey

Mak DO, McBride S, Foskett JK. 2001. Regulation by Ca(2+) and inositol 1,4,5-trisphosphate (InsP(3)) of single recombinant type 3 InsP(3) receptor channels: Ca(2+) activation uniquely distinguishes types 1 and 3 InsP(3) receptors. J Gen Physiol 117: 435–446.

Oldershaw KA, Taylor CW. 1993. Effects of Ca²⁺ chelators on purified inositol 1,4,5-trisphosphate (InsP₃) receptors

Pinto P, Pozzan T, Rizzuto R. 1998. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17: 5298–5308.

Ringer S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol 4: 29–42.

IP3 Receptors

Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004010

21
C.W. Taylor and S.C. Tovey

IP3 Receptors: Toward Understanding Their Activation

Colin W. Taylor and Stephen C. Tovey

Cold Spring Harb Perspect Biol 2010; doi: 10.1101/cshperspect.a004010 originally published online October 27, 2010

Subject Collection Calcium Signaling

Store-Operated Calcium Channels: New Perspectives on Mechanism and Function
Richard S. Lewis

Calcium Signaling in Smooth Muscle
David C. Hill-Eubanks, Matthias E. Werner, Thomas J. Heppner, et al.

Protein Kinase C: The "Masters" of Calcium and Lipid
Peter Lipp and Gregor Reither

Calcium Signaling in Synapse-to-Nucleus Communication
Anna M. Hagenston and Hilmar Bading

NAADP Receptors
Antony Galione

The Ca2+ Pumps of the Endoplasmic Reticulum and Golgi Apparatus
Ilse Vandecaetsbeek, Peter Vangheluwe, Luc Raeymaekers, et al.

mGluR1/TRPC3-mediated Synaptic Transmission and Calcium Signaling in Mammalian Central Neurons
Jana Hartmann, Horst A. Henning and Arthur Konnerth

Organellar Calcium Buffers
Daniel Prins and Marek Michalak

Calcium Signaling in Neuronal Development
Sheila S. Rosenberg and Nicholas C. Spitzer

Calcium Signaling in Cardiac Myocytes
Claire J. Fearnley, H. Llewelyn Roderick and Martin D. Bootman

Voltage-Gated Calcium Channels
William A. Catterall

Regulation by Ca2+-Signaling Pathways of Adenylyl Cyclases
Michelle L. Halls and Dermot M.F. Cooper

Endoplasmic-Reticulum Calcium Depletion and Disease
Djalila Mekahli, Geert Bultynck, Jan B. Parys, et al.

Ca2+ Signaling During Mammalian Fertilization: Requirements, Players, and Adaptations
Takuya Wakai, Veerle Vanderheyden and Rafael A. Fissore

Calcium Oscillations
Geneviève Dupont, Laurent Combettes, Gary S. Bird, et al.

Visualization of Ca2+ Signaling During Embryonic Skeletal Muscle Formation in Vertebrates
Sarah E. Webb and Andrew L. Miller

For additional articles in this collection, see http://cshperspectives.cshlp.org/cgi/collection/

Copyright © 2010 Cold Spring Harbor Laboratory Press; all rights reserved